Asphalt Maintenance Northgate

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Asphalt Maintenance in Northgate except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Paving Companies Quotes

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Driveway Paving Quotes

The primary use (70%) of asphalt Driveway Block Paving Cost is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Road surface

Asphalt Repair Costs

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Asphalt Maintenance Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Asphalt Surfacing Company Cost Estimate

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Asphalt Driveway Cost Estimate the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Paving Specialists Price

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Sealcoat

Paver Repair Quotes

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Asphalt Surfacing Company Cost Estimate

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Asphalt Driveway Near Me

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Paver Repair Price

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Surfacing Contractors Price

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Asphalt Driveway Price

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Lane

Paver Repair Cost Estimate

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Asphalt Driveway Repair Quotes

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Driveway Paving Cost Estimate

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Asphalt Installation Price

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Asphalt Driveway Near Me

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Pave My Driveway Price

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Asphalt Driveway Costs

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Asphalt Paving Price

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Asphalt concrete

Driveway Pavers Near Me

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Paver Repair Quotes

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Paving Companies Quotes

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Driveway

Asphalt Driveway Costs

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Asphalt Maintenance in Northgate ?

Residential Paving Companies Costs Macadam country road[dubious – discuss]

Macadam is a type of road construction, pioneered by Scottish engineer John Loudon McAdam around 1820, in which single-sized crushed stone layers of small angular stones are placed in shallow lifts and compacted thoroughly. A binding layer of stone dust (crushed stone from the original material) may form; it may also, after rolling, be covered with a binder to keep dust and stones together. The method simplified what had been considered state of the art at that point.

Pierre-Marie-Jérôme Trésaguet is sometimes considered the first person to bring post-Roman science to road building. A Frenchman from an engineering family, he worked paving roads in Paris from 1757 to 1764. As chief engineer of road construction of Limoges, he had opportunity to develop a better and cheaper method of road construction. In 1775, Tresaguet became engineer-general and presented his answer for road improvement in France, which soon became standard practice there.[1]

Trésaguet had recommended a roadway consisting of three layers of stones laid on a crowned subgrade with side ditches for drainage. The first two layers consisted of angular hand-broken aggregate, maximum size 3 inches (7.6 cm), to a depth of about 8 inches (20 cm). The third layer was about 2 inches (5 cm) thick with a maximum aggregate size of 1 inch (2.5 cm).[2] This top level surface permitted a smoother shape and protected the larger stones in the road structure from iron wheels and horse hooves. To keep the running surface level with the countryside, this road was put in a trench, which created drainage problems. These problems were addressed by changes that included digging deep side ditches, making the surface as solid as possible, and constructing the road with a difference in elevation (height) between the two edges, that difference being referred to interchangeably as the road's camber or cross slope.[2]

Laying Telford paving in Aspinwall, Pennsylvania, 1908

Thomas Telford, born in Dumfriesshire Scotland,[3] was a surveyor and engineer who applied Tresaguet's road building theories. In 1801 Telford worked for the British Commission of Highlands Roads and Bridges. He became director of the Holyhead Road Commission between 1815 and 1830. Telford extended Tresaguet's theories, but emphasized high-quality stone. He recognized that some of the road problems of the French could be avoided by using cubical stone blocks.[4]

Telford used roughly 12 in × 10 in × 6 in (30 cm × 25 cm × 15 cm) partially shaped paving stones (pitchers), with a slight flat face on the bottom surface. He turned the other faces more vertically than Tresaguet's method. The longest edge was arranged crossways to the traffic direction, and the joints were broken in the method of conventional brickwork, but with the smallest faces of the pitcher forming the upper and lower surfaces.[4]

Broken stone was wedged into the spaces between the tapered perpendicular faces to provide the layer with good lateral control. Telford kept the natural formation level and used masons to camber the upper surface of the blocks. He placed a 6-inch (15 cm) layer of stone no bigger than 6 cm (2.4 in) on top of the rock foundation. To finish the road surface he covered the stones with a mixture of gravel and broken stone. This structure came to be known as "Telford pitching." Telford's road depended on a resistant structure to prevent water from collecting and corroding the strength of the pavement. Telford raised the pavement structure above ground level whenever possible.

Where the structure could not be raised, Telford drained the area surrounding the roadside. Previous road builders in Britain ignored drainage problems and Telford's rediscovery of these principles was a major contribution to road construction.[5] Though notably of around the same time, John Metcalf was a strong advocate that drainage was in fact an important factor to road construction, and astonished colleagues by building dry roads through marshland. He accomplished this by installing a layer of brushwood and heather.

John Loudon McAdam (1756–1836)[6]

John Loudon McAdam was born in Ayr, Scotland, in 1756. In 1787, he became a trustee of the Ayrshire Turnpike in the Scottish Lowlands and during the next seven years this hobby became an obsession. He moved to Bristol, England, in 1802 and became a Commissioner for Paving in 1806.[7] On 15 January 1816, he was elected Surveyor-General of roads for the Turnpike Trust and was now responsible for 149 miles of road.[7] He then put his ideas about road construction into practice, the first 'macadamised' stretch of road being Marsh Road at Ashton Gate, Bristol.[7] He also began to actively propagate his ideas in two booklets called Remarks (or Observations) on the Present System of Roadmaking, (which ran nine editions between 1816 and 1827) and A Practical Essay on the Scientific Repair and Preservation of Public Roads, published in 1819.[8]

Photograph of macadam road, ca 1850s, Nicolaus, California

McAdam's method was simpler, yet more effective at protecting roadways: he discovered that massive foundations of rock upon rock were unnecessary, and asserted that native soil alone would support the road and traffic upon it, as long as it was covered by a road crust that would protect the soil underneath from water and wear.[9]

Unlike Telford and other road builders of the time, McAdam laid his roads as level as possible. His 30-foot-wide (9.1 m) road required only a rise of 3 inches (7.6 cm) from the edges to the centre. Cambering and elevation of the road above the water table enabled rain water to run off into ditches on either side.[10]

Size of stones was central to the McAdam's road building theory. The lower 20-centimetre (7.9 in) road thickness was restricted to stones no larger than 7.5 centimetres (3.0 in). The upper 5-centimetre (2.0 in) layer of stones was limited to 2 centimetres (0.79 in) size and stones were checked by supervisors who carried scales. A workman could check the stone size himself by seeing if the stone would fit into his mouth. The importance of the 2 cm stone size was that the stones needed to be much smaller than the 10 cm width of the iron carriage tyres that travelled on the road.[5]

McAdam believed that the "proper method" of breaking stones for utility and rapidity was accomplished by people sitting down and using small hammers, breaking the stones so that none of them was larger than six ounces in weight. He also wrote that the quality of the road would depend on how carefully the stones were spread on the surface over a sizeable space, one shovelful at a time.[11]

McAdam directed that no substance that would absorb water and affect the road by frost should be incorporated into the road. Neither was anything to be laid on the clean stone to bind the road. The action of the road traffic would cause the broken stone to combine with its own angles, merging into a level, solid surface that would withstand weather or traffic.[12]

Through his road-building experience, McAdam had learned that a layer of broken angular stones would act as a solid mass and would not require the large stone layer previously used to build roads. Keeping the surface stones smaller than the tyre width made a good running surface for traffic. The small surface stones also provided low stress on the road, so long as it could be kept reasonably dry.[13]

Construction of the first macadamized road in the United States (1823). In the foreground, workers are breaking stones "so as not to exceed 6 ounces [170 g] in weight or to pass a two-inch [5 cm] ring".[14][15][16]

The first macadam road built in the United States was constructed between Hagerstown and Boonsboro, Maryland and was named at the time Boonsborough Turnpike Road. This was the last section of unimproved road between Baltimore on the Chesapeake Bay to Wheeling on the Ohio River. Stagecoaches traveling the Hagerstown to Boonsboro road in the winter took 5 to 7 hours to cover the 10-mile (16 km) stretch.[15][16] This road was completed in 1823, using McAdam's road techniques, except that the finished road was compacted with a cast-iron roller instead of relying on road traffic for compaction.[17][15][16] The second American road built using McAdam principles was the Cumberland Road which was 73 miles (117 km) long and was completed in 1830 after five years of work.[15][16]

McAdam's renown is due to his effective and economical construction, which was a great improvement over the methods used by his generation. He emphasized that roads could be constructed for any kind of traffic, and he helped to alleviate the resentment travelers felt toward increasing traffic on the roads. His legacy lies in his advocacy of effective road maintenance and management. He advocated a central road authority and the trained professional official, who could be paid a salary that would keep him from corruption. This professional could give his entire time to his duties and be held responsible for his actions.[18]

McAdam's road building technology was applied to roads by other engineers. One of these engineers was Richard Edgeworth, who filled the gaps between the surface stones with a mixture of stone dust and water, providing a smoother surface for the increased traffic using the roads.[19] This basic method of construction is sometimes known as water-bound macadam. Although this method required a great deal of manual labour, it resulted in a strong and free-draining pavement. Roads constructed in this manner were described as "macadamized."[19]

New macadam road construction at McRoberts, Kentucky: pouring tar. 1926

With the advent of motor vehicles, dust became a serious problem on macadam roads. The area of low air pressure created under fast-moving vehicles sucked dust from the road surface, creating dust clouds and a gradual unraveling of the road material.[20] This problem was approached by spraying tar on the surface to create tar-bound macadam. On March 13, 1902 in Monaco, a Swiss doctor, Ernest Guglielminetti, came upon the idea of using tar from Monaco's gasworks for binding the dust.[21] Later a mixture of coal tar and ironworks slag, patented by Edgar Purnell Hooley as tarmac, was introduced.

A more durable road surface (modern mixed asphalt pavement) sometimes referred to in the US as blacktop, was introduced in the 1920s. This pavement method mixed the aggregates into the asphalt with the binding material before they were laid. The macadam surface method laid the stone and sand aggregates on the road and then sprayed it with the binding material.[22] While macadam roads have now been resurfaced in most developed countries, some are preserved along stretches of roads such as the United States' National Road.[citation needed]

Because of the historic use of macadam as a road surface, roads in some parts of the United States (as parts of Pennsylvania) are often referred to as macadam, even though they might be made of asphalt or concrete. Similarly, the term "tarmac" is sometimes colloquially misapplied to asphalt roads or aircraft runways.[23]

Asphalt concrete

Asphalt Driveway Repair Price A single brick A wall constructed in glazed-headed Flemish bond with bricks of various shades and lengths Raw (green) Indian brick An old brick wall in English bond laid with alternating courses of headers and stretchers Bricked Front Street along the Cane River in historic Natchitoches, Louisiana

A brick is building material used to make walls, pavements and other elements in masonry construction. Traditionally, the term brick referred to a unit composed of clay, but it is now used to denote any rectangular units laid in mortar. A brick can be composed of clay-bearing soil, sand, and lime, or concrete materials. Bricks are produced in numerous classes, types, materials, and sizes which vary with region and time period, and are produced in bulk quantities. Two basic categories of bricks are fired and non-fired bricks.

Block is a similar term referring to a rectangular building unit composed of similar materials, but is usually larger than a brick. Lightweight bricks (also called lightweight blocks) are made from expanded clay aggregate.

Fired bricks are one of the longest-lasting and strongest building materials, sometimes referred to as artificial stone, and have been used since circa 5000 BC. Air-dried bricks, also known as mudbricks, have a history older than fired bricks, and have an additional ingredient of a mechanical binder such as straw.

Bricks are laid in courses and numerous patterns known as bonds, collectively known as brickwork, and may be laid in various kinds of mortar to hold the bricks together to make a durable structure.

House construction using bricks in Kerala, India The Roman Basilica Aula Palatina in Trier, Germany, built with fired bricks in the 4th century as an audience hall for Constantine I

The earliest bricks were dried brick, meaning that they were formed from clay-bearing earth or mud and dried (usually in the sun) until they were strong enough for use. The oldest discovered bricks, originally made from shaped mud and dating before 7500 BC, were found at Tell Aswad, in the upper Tigris region and in southeast Anatolia close to Diyarbakir.[1] Other more recent findings, dated between 7,000 and 6,395 BC, come from Jericho, Catal Hüyük, the ancient Egyptian fortress of Buhen, and the ancient Indus Valley cities of Mohenjo-daro, Harappa,[2] and Mehrgarh.[3] Ceramic, or fired brick was used as early as 3000 BC in early Indus Valley cities.[4]

The ancient Jetavanaramaya stupa in Anuradhapura, Sri Lanka is one of the largest brick structures in the world. The world's highest brick tower of St. Martin's Church in Landshut, Germany, completed in 1500 Malbork Castle, former Ordensburg of the Teutonic Order – biggest brick castle in the world

In pre-modern China, bricks were being used from the 2nd millennium BC at a site near Xi'an.[5] Bricks were produced on a larger scale under the Western Zhou dynasty about 3,000 years ago, and evidence for some of the first fired bricks ever produced has been discovered in ruins dating back to the Zhou.[6][7][8] The carpenter's manual Yingzao Fashi, published in 1103 at the time of the Song dynasty described the brick making process and glazing techniques then in use. Using the 17th century encyclopaedic text Tiangong Kaiwu, historian Timothy Brook outlined the brick production process of Ming Dynasty China:

"...the kilnmaster had to make sure that the temperature inside the kiln stayed at a level that caused the clay to shimmer with the colour of molten gold or silver. He also had to know when to quench the kiln with water so as to produce the surface glaze. To anonymous labourers fell the less skilled stages of brick production: mixing clay and water, driving oxen over the mixture to trample it into a thick paste, scooping the paste into standardised wooden frames (to produce a brick roughly 42 cm long, 20 cm wide, and 10 cm thick), smoothing the surfaces with a wire-strung bow, removing them from the frames, printing the fronts and backs with stamps that indicated where the bricks came from and who made them, loading the kilns with fuel (likelier wood than coal), stacking the bricks in the kiln, removing them to cool while the kilns were still hot, and bundling them into pallets for transportation. It was hot, filthy work." The brickwork of Shebeli Tower in Iran displays 12th-century craftsmanship Main article: Roman brick

Early civilisations around the Mediterranean adopted the use of fired bricks, including the Ancient Greeks and Romans. The Roman legions operated mobile kilns,[9] and built large brick structures throughout the Roman Empire, stamping the bricks with the seal of the legion.

During the Early Middle Ages the use of bricks in construction became popular in Northern Europe, after being introduced there from Northern-Western Italy. An independent style of brick architecture, known as brick Gothic (similar to Gothic architecture) flourished in places that lacked indigenous sources of rocks. Examples of this architectural style can be found in modern-day Denmark, Germany, Poland, and Russia.

This style evolved into Brick Renaissance as the stylistic changes associated with the Italian Renaissance spread to northern Europe, leading to the adoption of Renaissance elements into brick building. A clear distinction between the two styles only developed at the transition to Baroque architecture. In Lübeck, for example, Brick Renaissance is clearly recognisable in buildings equipped with terracotta reliefs by the artist Statius von Düren, who was also active at Schwerin (Schwerin Castle) and Wismar (Fürstenhof).

Chile house in Hamburg, Germany

Long-distance bulk transport of bricks and other construction equipment remained prohibitively expensive until the development of modern transportation infrastructure, with the construction of canal, roads, and railways.

Production of bricks increased massively with the onset of the Industrial Revolution and the rise in factory building in England. For reasons of speed and economy, bricks were increasingly preferred as building material to stone, even in areas where the stone was readily available. It was at this time in London that bright red brick was chosen for construction to make the buildings more visible in the heavy fog and to help prevent traffic accidents.[10]

The transition from the traditional method of production known as hand-moulding to a mechanised form of mass-production slowly took place during the first half of the nineteenth century. Possibly the first successful brick-making machine was patented by Henry Clayton, employed at the Atlas Works in Middlesex, England, in 1855, and was capable of producing up to 25,000 bricks daily with minimal supervision.[11] His mechanical apparatus soon achieved widespread attention after it was adopted for use by the South Eastern Railway Company for brick-making at their factory near Folkestone.[12] The Bradley & Craven Ltd ‘Stiff-Plastic Brickmaking Machine’ was patented in 1853, apparently predating Clayton. Bradley & Craven went on to be a dominant manufacturer of brickmaking machinery.[13] Predating both Clayton and Bradley & Craven Ltd. however was the brick making machine patented by Richard A. Ver Valen of Haverstraw, New York in 1852.[14]

The demand for high office building construction at the turn of the 20th century led to a much greater use of cast and wrought iron, and later, steel and concrete. The use of brick for skyscraper construction severely limited the size of the building – the Monadnock Building, built in 1896 in Chicago, required exceptionally thick walls to maintain the structural integrity of its 17 storeys.

Following pioneering work in the 1950s at the Swiss Federal Institute of Technology and the Building Research Establishment in Watford, UK, the use of improved masonry for the construction of tall structures up to 18 storeys high was made viable. However, the use of brick has largely remained restricted to small to medium-sized buildings, as steel and concrete remain superior materials for high-rise construction.[15]

This wall in Beacon Hill, Boston shows different types of brickwork and stone foundations

There are thousands of types of bricks that are named for their use, size, forming method, origin, quality, texture, and/or materials.

Categorized by manufacture method:

Categorized by use:

Specialized use bricks:

Bricks named for place of origin:

Brick making at the beginning of the 20th century.

Three basic types of brick are un-fired, fired, and chemically set bricks. Each type is manufactured differently.

Main article: Mudbrick

Unfired bricks, also known as mudbricks, are made from a wet, clay-containing soil mixed with straw or similar binders. They are air-dried until ready for use.

Raw bricks sun-drying before being fired

Fired bricks are burned in a kiln which makes them durable. Modern, fired, clay bricks are formed in one of three processes – soft mud, dry press, or extruded. Depending on the country, either the extruded or soft mud method is the most common, since they are the most economical.

Normally, bricks contain the following ingredients:[16]

  1. Silica (sand) – 50% to 60% by weight
  2. Alumina (clay) – 20% to 30% by weight
  3. Lime – 2 to 5% by weight
  4. Iron oxide – ≤ 7% by weight
  5. Magnesia – less than 1% by weight

Three main methods are used for shaping the raw materials into bricks to be fired:

Xhosa brickmaker at kiln near Ngcobo in 2007

In many modern brickworks, bricks are usually fired in a continuously fired tunnel kiln, in which the bricks are fired as they move slowly through the kiln on conveyors, rails, or kiln cars, which achieves a more consistent brick product. The bricks often have lime, ash, and organic matter added, which accelerates the burning process.

A brickmaker in India – Tashrih al-aqvam (1825)

The other major kiln type is the Bull's Trench Kiln (BTK), based on a design developed by British engineer W. Bull in the late 19th century.

An oval or circular trench is dug, 6–9 metres wide, 2-2.5 metres deep, and 100–150 metres in circumference. A tall exhaust chimney is constructed in the centre. Half or more of the trench is filled with "green" (unfired) bricks which are stacked in an open lattice pattern to allow airflow. The lattice is capped with a roofing layer of finished brick.

In operation, new green bricks, along with roofing bricks, are stacked at one end of the brick pile; cooled finished bricks are removed from the other end for transport to their destinations. In the middle, the brick workers create a firing zone by dropping fuel (coal, wood, oil, debris, and so on) through access holes in the roof above the trench.

The advantage of the BTK design is a much greater energy efficiency compared with clamp or scove kilns. Sheet metal or boards are used to route the airflow through the brick lattice so that fresh air flows first through the recently burned bricks, heating the air, then through the active burning zone. The air continues through the green brick zone (pre-heating and drying the bricks), and finally out the chimney, where the rising gases create suction that pulls air through the system. The reuse of heated air yields savings in fuel cost.

As with the rail process, the BTK process is continuous. A half-dozen labourers working around the clock can fire approximately 15,000–25,000 bricks a day. Unlike the rail process, in the BTK process the bricks do not move. Instead, the locations at which the bricks are loaded, fired, and unloaded gradually rotate through the trench.[17]

Yellow London Stocks at Waterloo station

The fired colour of tired clay bricks is influenced by the chemical and mineral content of the raw materials, the firing temperature, and the atmosphere in the kiln. For example, pink bricks are the result of a high iron content, white or yellow bricks have a higher lime content. Most bricks burn to various red hues; as the temperature is increased the colour moves through dark red, purple, and then to brown or grey at around 1,300 °C (2,372 °F). The names of bricks may reflect their origin and colour, such as London stock brick and Cambridgeshire White. Brick tinting may be performed to change the colour of bricks to blend-in areas of brickwork with the surrounding masonry.

An impervious and ornamental surface may be laid on brick either by salt glazing, in which salt is added during the burning process, or by the use of a slip, which is a glaze material into which the bricks are dipped. Subsequent reheating in the kiln fuses the slip into a glazed surface integral with the brick base.

Chemically set bricks are not fired but may have the curing process accelerated by the application of heat and pressure in an autoclave.

Swedish Mexitegel is a sand-lime or lime-cement brick.

Calcium-silicate bricks are also called sandlime or flintlime bricks, depending on their ingredients. Rather than being made with clay they are made with lime binding the silicate material. The raw materials for calcium-silicate bricks include lime mixed in a proportion of about 1 to 10 with sand, quartz, crushed flint, or crushed siliceous rock together with mineral colourants. The materials are mixed and left until the lime is completely hydrated; the mixture is then pressed into moulds and cured in an autoclave for three to fourteen hours to speed the chemical hardening.[18] The finished bricks are very accurate and uniform, although the sharp arrises need careful handling to avoid damage to brick and bricklayer. The bricks can be made in a variety of colours; white, black, buff, and grey-blues are common, and pastel shades can be achieved. This type of brick is common in Sweden, especially in houses built or renovated in the 1970s. In India these are known as fly ash bricks, manufactured using the FaL-G (fly ash, lime, and gypsum) process. Calcium-silicate bricks are also manufactured in Canada and the United States, and meet the criteria set forth in ASTM C73 – 10 Standard Specification for Calcium Silicate Brick (Sand-Lime Brick).

Main article: Concrete masonry unit A concrete brick-making assembly line in Guilinyang Town, Hainan, China. This operation produces a pallet containing 42 bricks, approximately every 30 seconds.

Bricks formed from concrete are usually termed as blocks, and are typically pale grey. They are made from a dry, small aggregate concrete which is formed in steel moulds by vibration and compaction in either an "egglayer" or static machine. The finished blocks are cured, rather than fired, using low-pressure steam. Concrete blocks are manufactured in a much wider range of shapes and sizes than clay bricks and are also available with a wider range of face treatments – a number of which simulate the appearance of clay bricks.

Concrete bricks are available in many colours and as an engineering brick made with sulfate-resisting Portland cement or equivalent. When made with adequate amount of cement they are suitable for harsh environments such as wet conditions and retaining walls. They are made to standards BS 6073, EN 771-3 or ASTM C55. Concrete bricks contract or shrink so they need movement joints every 5 to 6 metres, but are similar to other bricks of similar density in thermal and sound resistance and fire resistance.[18]

Main article: Compressed earth block

Compressed earth blocks are made mostly from slightly moistened local soils compressed with a mechanical hydraulic press or manual lever press. A small amount of a cement binder may be added, resulting in a stabilised compressed earth block.

Comparison of typical brick sizes of assorted countries with isometric projections with dimensions in mm Loose bricks

For efficient handling and laying, bricks must be small enough and light enough to be picked up by the bricklayer using one hand (leaving the other hand free for the trowel). Bricks are usually laid flat, and as a result, the effective limit on the width of a brick is set by the distance which can conveniently be spanned between the thumb and fingers of one hand, normally about four inches (about 100 mm). In most cases, the length of a brick is about twice its width, about eight inches (about 200 mm) or slightly more. This allows bricks to be laid bonded in a structure which increases stability and strength (for an example, see the illustration of bricks laid in English bond, at the head of this article). The wall is built using alternating courses of stretchers, bricks laid longways, and headers, bricks laid crossways. The headers tie the wall together over its width. In fact, this wall is built in a variation of English bond called English cross bond where the successive layers of stretchers are displaced horizontally from each other by half a brick length. In true English bond, the perpendicular lines of the stretcher courses are in line with each other.

A bigger brick makes for a thicker (and thus more insulating) wall. Historically, this meant that bigger bricks were necessary in colder climates (see for instance the slightly larger size of the Russian brick in table below), while a smaller brick was adequate, and more economical, in warmer regions. A notable illustration of this correlation is the Green Gate in Gdansk; built in 1571 of imported Dutch brick, too small for the colder climate of Gdansk, it was notorious for being a chilly and drafty residence. Nowadays this is no longer an issue, as modern walls typically incorporate specialised insulation materials.

The correct brick for a job can be selected from a choice of colour, surface texture, density, weight, absorption, and pore structure, thermal characteristics, thermal and moisture movement, and fire resistance.

In England, the length and width of the common brick has remained fairly constant over the centuries (but see brick tax), but the depth has varied from about two inches (about 51 mm) or smaller in earlier times to about two and a half inches (about 64 mm) more recently. In the United Kingdom, the usual size of a modern brick is 215 × 102.5 × 65 mm (about ​8 5⁄8 × ​4 1⁄8 × ​2 5⁄8 inches), which, with a nominal 10 mm (​3⁄8 inch) mortar joint, forms a unit size of 225 × 112.5 × 75 mm (9 × ​4 1⁄2 × 3 inches), for a ratio of 6:3:2.

In the United States, modern standard bricks are specified for various uses;[19] most are sized at about 8 × ​3 5⁄8  × ​2 1⁄4 inches (203 × 92 × 57 mm). The more commonly used is the modular brick ​7 5⁄8  × ​3 5⁄8  × ​2 1⁄4 inches (194 × 92 × 57 mm). This modular brick of ​7 5⁄8 with a ​3⁄8 mortar joint eases the calculation of the number of bricks in a given wall.[20]

Some brickmakers create innovative sizes and shapes for bricks used for plastering (and therefore not visible on the inside of the building) where their inherent mechanical properties are more important than their visual ones.[21] These bricks are usually slightly larger, but not as large as blocks and offer the following advantages:

Blocks have a much greater range of sizes. Standard co-ordinating sizes in length and height (in mm) include 400×200, 450×150, 450×200, 450×225, 450×300, 600×150, 600×200, and 600×225; depths (work size, mm) include 60, 75, 90, 100, 115, 140, 150, 190, 200, 225, and 250. They are usable across this range as they are lighter than clay bricks. The density of solid clay bricks is around 2000 kg/m³: this is reduced by frogging, hollow bricks, and so on, but aerated autoclaved concrete, even as a solid brick, can have densities in the range of 450–850 kg/m³.

Bricks may also be classified as solid (less than 25% perforations by volume, although the brick may be "frogged," having indentations on one of the longer faces), perforated (containing a pattern of small holes through the brick, removing no more than 25% of the volume), cellular (containing a pattern of holes removing more than 20% of the volume, but closed on one face), or hollow (containing a pattern of large holes removing more than 25% of the brick's volume). Blocks may be solid, cellular or hollow

The term "frog" can refer to the indentation or the implement used to make it. Modern brickmakers usually use plastic frogs but in the past they were made of wood.

Brick arch from a vault in Roman Bath – England A brick section of the old Dixie Highway, United States

The compressive strength of bricks produced in the United States ranges from about 1000 lbf/in² to 15,000 lbf/in² (7 to 105 MPa or N/mm² ), varying according to the use to which the brick are to be put. In England clay bricks can have strengths of up to 100 MPa, although a common house brick is likely to show a range of 20–40 MPa.

In the United States, bricks have been used for both buildings and pavements. Examples of brick use in buildings can be seen in colonial era buildings and other notable structures around the country. Bricks have been used in pavements especially during the late 19th century and early 20th century. The introduction of asphalt and concrete reduced the use of brick pavements, but it is used as a method of traffic calming or as a decorative surface in pedestrian precincts. For example, in the early 1900s, most of the streets in the city of Grand Rapids, Michigan, were paved with bricks. Today, there are only about 20 blocks of brick-paved streets remaining (totalling less than 0.5 percent of all the streets in the city limits).[22] Much like in Grand Rapids, municipalities across the United States began replacing brick streets with inexpensive asphalt concrete by the mid-20th century.[23]

Bricks in the metallurgy and glass industries are often used for lining furnaces, in particular refractory bricks such as silica, magnesia, chamotte and neutral (chromomagnesite) refractory bricks. This type of brick must have good thermal shock resistance, refractoriness under load, high melting point, and satisfactory porosity. There is a large refractory brick industry, especially in the United Kingdom, Japan, the United States, Belgium and the Netherlands.

In Northwest Europe, bricks have been used in construction for centuries. Until recently, almost all houses were built almost entirely from bricks. Although many houses are now built using a mixture of concrete blocks and other materials, many houses are skinned with a layer of bricks on the outside for aesthetic appeal.

Engineering bricks are used where strength, low water porosity or acid (flue gas) resistance are needed.

In the UK a red brick university is one founded in the late 19th or early 20th century. The term is used to refer to such institutions collectively to distinguish them from the older Oxbridge institutions, and refers to the use of bricks, as opposed to stone, in their buildings.

Colombian architect Rogelio Salmona was noted for his extensive use of red bricks in his buildings and for using natural shapes like spirals, radial geometry and curves in his designs.[24] Most buildings in Colombia are made of brick, given the abundance of clay in equatorial countries like this one.

Starting in the 20th century, the use of brickwork declined in some areas due to concerns with earthquakes. Earthquakes such as the San Francisco earthquake of 1906 and the 1933 Long Beach earthquake revealed the weaknesses of unreinforced brick masonry in earthquake-prone areas. During seismic events, the mortar cracks and crumbles, and the bricks are no longer held together. Brick masonry with steel reinforcement, which helps hold the masonry together during earthquakes, was used to replace many of the unreinforced masonry buildings. Retrofitting older unreinforced masonry structures has been mandated in many jurisdictions.

A panorama after the 1906 San Francisco earthquake. Asphalt Repair Quotes

https://www.helpwikileaks.co.za/southgate/

Help Wiki Leaks Have Asphalt Services List

Asphalt Building Construction Contractors Inc Midrand

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Asphalt Building Construction Contractors Inc in Midrand except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Asphalt Road Price

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Paving Services Price

The primary use (70%) of asphalt How To Pave A Driveway With Asphalt is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Brick

Commercial Paving Quotes

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Asphalt Building Construction Contractors Inc Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Paver Repair Quotes

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Asphalt Repair Companies Near Me the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

The Paving Company Near Me

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Crocodile cracking

Paving Contractors Costs

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Asphalt Contractors Near Me

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Pave My Driveway Costs

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Driveway Paving Quotes

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Repair Quotes

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Asphalt Paving Price

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Permeable paving

Pave My Driveway Price

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Driveway Pavers Near Me

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Commercial Paving Quotes

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Asphalt Construction Quotes

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Paver Repair Cost Estimate

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Paver Repair Quotes

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Asphalt Driveway Paving Price

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Paving Companies Quotes

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Brick

Asphalt Driveway Price

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Residential Paving Cost Estimate

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Asphalt Driveway Near Me

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Crocodile cracking

Asphalt Paving Cost Estimate

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Asphalt Building Construction Contractors Inc in Midrand ?

Asphalt Repair Price Driveway to a farm Driveway apron and sloped curb to a public street, all under construction

A driveway (also called drive in UK English)[1] is a type of private road for local access to one or a small group of structures, and is owned and maintained by an individual or group.

Driveways rarely have traffic lights, but some that bear heavy traffic, especially those leading to commercial businesses and parks, do.

Driveways may be decorative in ways that public roads cannot, because of their lighter traffic and the willingness of owners to invest in their construction. Driveways are not resurfaced, snow blown or otherwise maintained by governments. They are generally designed to conform to the architecture of connected houses or other buildings.

Some of the materials that can be used for driveways include concrete, decorative brick, cobblestone, block paving, asphalt, gravel, decomposed granite, and surrounded with grass or other ground-cover plants.

Driveways are commonly used as paths to private garages, carports, or houses. On large estates, a driveway may be the road that leads to the house from the public road, possibly with a gate in between. Some driveways divide to serve different homeowners. A driveway may also refer to a small apron of pavement in front of a garage with a curb cut in the sidewalk, sometimes too short to accommodate a car.

Often, either by choice or to conform with local regulations, cars are parked in driveways in order to leave streets clear for traffic. Moreover, some jurisdictions prohibit parking or leaving standing any motor vehicle upon any residential lawn area (defined as the property from the front of a residential house, condominium, or cooperative to the street line other than a driveway, walkway, concrete or blacktopped surface parking space).[2] Other examples include the city of Berkeley, California that forbids "any person to park or leave standing, or cause to be parked or left standing any vehicle upon any public street in the City for seventy-two or more consecutive hours."[3] Other areas may prohibit leaving vehicles on residential streets during certain times (for instance, to accommodate regular street cleaning), necessitating the use of driveways.

Residential driveways are also used for such things as garage sales, automobile washing and repair, and recreation, notably (in North America) for basketball practice.

Another form of driveway is a 'Run-Up', or short piece of land used usually at the front of the property to park a vehicle on.[citation needed]

Crocodile cracking

Residential Paving Cost Estimate Sealcoating a road on the University of California, Davis campus in 2013.

Sealcoating, or pavement sealing, is the process of applying a protective coating to asphalt-based pavements to provide a layer of protection from the elements: water, oils, and U.V. damage.

Sealcoat or pavement sealer is a coating for asphalt-based pavements. Sealcoating is marketed as a protective coating that extends the life of asphalt pavements. There is not any independent research that proves these claims.

Sealcoating may also reduce the friction or anti-skid properties associated with the exposed aggregates in asphalt.

Not all pavement sealcoat are created equal. For example, refined tar-based sealer offers the best protecting against water penetration and chemical resistance. Asphalt-based sealer typically offers poor protection against environmental chemical and harsher climates (salt water). Petroleum-based sealer offer protection against water and chemicals somewhere between the other two sealers. Another difference between coatings is in terms of wear. Again, refined tar-based sealer offers the best wear characteristics (typically 3–5 years) while asphalt-based sealer may last 1–3 years. Petroleum-based sealer falls between refined tar and asphalt.

There are concerns about pavement sealer polluting the environment after it is abraded from the surface of the pavement. Some states in North America have banned the use of coal tar–based sealants primarily based on United States Geological Survey studies.[1] The industry group that represents sealcoat manufacturers has performed numerous research and reviews of the USGS and have found it to be erroneous, biased (citation and white hat, to name a few) and too generalized in order to draw the conclusions that the United States Geological Survey claims.

There are primarily three types of pavement sealers. They are commonly known as refined tar-based (coal tar based), asphalt-based, and petroleum-based. All three have their advantages but are typically chosen by the contractors’ preference unless otherwise specified.

Prior to application the surface must be completely clean and dry using sweeping methods and/or blowers. If the surface is not clean and dry, then poor adhesion will result. Pavement sealers are applied with either pressurized spray equipment, or self-propelled squeegee machines or by hand with a squeegee. Equipment must have continuous agitation to maintain consistency of the sealcoat mix. The process is typically a two-coat application which requires 24 to 48 hours of curing before vehicles can be allowed back on the surface. Once the surface is properly prepared, then properly mixed sealer will be applied at about 60 square feet per gallon per coat.

The Sealcoating Process

Some studies that suggest that refined tar sealants are a significant contributor to polycyclic aromatic hydrocarbon levels in streams and creek beds and that the continual application of sealcoats may be a significant factor. As a result, a few municipalities in the United States have banned this material.[2] The same studies also suggest that it can be harmful if ingested before curing and ingesting soil or dust contaminated by eroded coal tar sealant.[3] It is also known to have effects on fish and other animals that live in water.

Asphalt Paving Price

https://www.helpwikileaks.co.za/southgate/

Help Wiki Leaks Have Asphalt Services List

Asphalt Pavement Construction Westcliff

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Asphalt Pavement Construction in Westcliff except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Paver Repair Price

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Paver Repair Quotes

The primary use (70%) of asphalt Asphalt Grinding Companies is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Road surface

Asphalt Driveway Repair Quotes

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Asphalt Pavement Construction Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Asphalt Contractors Near Me

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Driveway Pavers Companies the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

The Paving Company Near Me

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Permeable paving

Driveway Paving Contractors Near Me

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Residential Paving Cost Estimate

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Paver Repair Cost Estimate

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Paving Companies Quotes

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Residential Paving Companies Costs

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Asphalt Contractors Near Me

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Macadam

Pave My Driveway Price

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Residential Paving Cost Estimate

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Driveway Paving Contractors Cost Estimate

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Asphalt Driveway Repair Quotes

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Paver Repair Quotes

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Residential Paving Cost Estimate

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Paver Repair Cost Estimate

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Pave My Driveway Costs

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Sealcoat

Paver Repair Cost Estimate

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Residential Paving Companies Costs

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

The Paving Company Near Me

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Concrete

Residential Paving Cost Estimate

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Asphalt Pavement Construction in Westcliff ?

Asphalt Surfacing Company Price

Bleeding or flushing is shiny, black surface film of asphalt on the road surface caused by upward movement of asphalt in the pavement surface.[1][2] Common causes of bleeding are too much asphalt in asphalt concrete, hot weather, low space air void content and quality of asphalt.[3]

Bleeding is a safety concern since it results in a very smooth surface, without the texture required to prevent hydroplaning.

Concrete

Paving Companies Near Me Sealcoating a road on the University of California, Davis campus in 2013.

Sealcoating, or pavement sealing, is the process of applying a protective coating to asphalt-based pavements to provide a layer of protection from the elements: water, oils, and U.V. damage.

Sealcoat or pavement sealer is a coating for asphalt-based pavements. Sealcoating is marketed as a protective coating that extends the life of asphalt pavements. There is not any independent research that proves these claims.

Sealcoating may also reduce the friction or anti-skid properties associated with the exposed aggregates in asphalt.

Not all pavement sealcoat are created equal. For example, refined tar-based sealer offers the best protecting against water penetration and chemical resistance. Asphalt-based sealer typically offers poor protection against environmental chemical and harsher climates (salt water). Petroleum-based sealer offer protection against water and chemicals somewhere between the other two sealers. Another difference between coatings is in terms of wear. Again, refined tar-based sealer offers the best wear characteristics (typically 3–5 years) while asphalt-based sealer may last 1–3 years. Petroleum-based sealer falls between refined tar and asphalt.

There are concerns about pavement sealer polluting the environment after it is abraded from the surface of the pavement. Some states in North America have banned the use of coal tar–based sealants primarily based on United States Geological Survey studies.[1] The industry group that represents sealcoat manufacturers has performed numerous research and reviews of the USGS and have found it to be erroneous, biased (citation and white hat, to name a few) and too generalized in order to draw the conclusions that the United States Geological Survey claims.

There are primarily three types of pavement sealers. They are commonly known as refined tar-based (coal tar based), asphalt-based, and petroleum-based. All three have their advantages but are typically chosen by the contractors’ preference unless otherwise specified.

Prior to application the surface must be completely clean and dry using sweeping methods and/or blowers. If the surface is not clean and dry, then poor adhesion will result. Pavement sealers are applied with either pressurized spray equipment, or self-propelled squeegee machines or by hand with a squeegee. Equipment must have continuous agitation to maintain consistency of the sealcoat mix. The process is typically a two-coat application which requires 24 to 48 hours of curing before vehicles can be allowed back on the surface. Once the surface is properly prepared, then properly mixed sealer will be applied at about 60 square feet per gallon per coat.

The Sealcoating Process

Some studies that suggest that refined tar sealants are a significant contributor to polycyclic aromatic hydrocarbon levels in streams and creek beds and that the continual application of sealcoats may be a significant factor. As a result, a few municipalities in the United States have banned this material.[2] The same studies also suggest that it can be harmful if ingested before curing and ingesting soil or dust contaminated by eroded coal tar sealant.[3] It is also known to have effects on fish and other animals that live in water.

Asphalt Contractors Near Me

https://www.helpwikileaks.co.za/southgate/

Help Wiki Leaks Have Asphalt Services List

Asphalt Construction Company Pretoria

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Asphalt Construction Company in Pretoria except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Paving Specialists Near Me

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Asphalt Repair Price

The primary use (70%) of asphalt Asphalt Companies Hiring Near Me is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Michigan left

Asphalt Driveway Repair Price

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Asphalt Construction Company Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Asphalt Surfacing Company Price

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  How To Pave A Driveway With Asphalt the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Paver Repair Quotes

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Brick

Commercial Paving Quotes

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Asphalt Contractors Price

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Asphalt Repair Price

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Asphalt Contractors Near Me

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Repair Price

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Asphalt Road Price

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Concrete

Asphalt Paving Cost Estimate

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Asphalt Construction Quotes

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Driveway Paving Cost Estimate

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Pave My Driveway Quotes

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Paver Repair Quotes

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Asphalt Driveway Repair Quotes

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Asphalt Repair Cost Estimate

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Asphalt Repair Price

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Crocodile cracking

The Paving Company Near Me

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

The Paving Company Costs

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Asphalt Driveway Paving Price

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Concrete

Asphalt Road Price

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Asphalt Construction Company in Pretoria ?

Asphalt Contractors Costs Thru lanes indicated by arrows on California CR G4 (Montague Expressway) in Silicon Valley.

In the context of traffic control, a lane is part of a roadway (carriageway) that is designated for use by a single line of vehicles, to control and guide drivers and reduce traffic conflicts.[1] Most public roads (highways) have at least two lanes, one for traffic in each direction, separated by lane markings. On multilane roadways and busier two-lane roads, lanes are designated with road surface markings. Major highways often have two multi-lane roadways separated by a median.

Some roads and bridges that carry very low volumes of traffic are less than 15 feet (4.6 m) wide, and are only a single lane wide. Vehicles travelling in opposite directions must slow or stop to pass each other. In rural areas, these are often called country lanes. In urban areas, alleys are often only one lane wide. Urban and suburban one lane roads are often designated for one-way traffic.

Lane capacity varies widely due to conditions such as neighboring lanes, lane width, elements next to the road, number of driveways, presence of parking, speed limits, number of heavy vehicles and so on – the range can be as low as 1000 passenger cars / hour to as high as 4800 passenger cars /hour but mostly falls between 1500 and 2400 passenger cars / hour.[2]

The Ontario Highway 401 in the Greater Toronto area, with 17 travel lanes in 6 separate carriageways visible in the midground. Turning lane on the Rodovia BR-101 (Brazil) Play media Changing lanes, Gothenburg, Sweden Transfer lanes, connecting surface collector lanes with through lanes between two tunnels A left-turn merging lane in Germany, needing explanation by a crafted sign These usages lead to the phrases life in the slow lane and life in the fast lane, used to describe relaxed or busy lifestyles, respectively and used as the titles of various books and songs.

While in general, wider lanes are associated with a reduction in crashes,[7] in urban settings both narrow (less than 2.8 m) and wide (over 3.1~3.2 m) lanes increase crash risks.[8] Wider lanes (over 3.3~3.4m) are associated with 33% higher impact speeds, as well as higher crash rates. Carrying capacity is also maximal at a width of 3 to 3.1 metres (9.8 to 10.2 ft), both for motor traffic and for bicycles. Pedestrian volume declines as lanes widen, and intersections with narrower lanes provide the highest capacity for bicycles.[9] As lane width decreases, traffic speed diminishes.[10]

Advocates for safety of people walking and people on bikes, and many new urbanists disagree with traditional thinking in traffic engineering, saying that safety and capacity are not adversely impacted by reducing lanes widths to as little as 10 feet (3.0 m).[11] Moreover, wider travel lanes also increase exposure and crossing distance for pedestrians at intersections and midblock crossings.

assumed widths and heights in road design for Europe (in meters)

The widths of vehicle lanes typically vary from 9 to 15 feet (2.7 to 4.6 m). Lane widths are commonly narrower on low volume roads and wider on higher volume roads. The lane width depends on the assumed maximum vehicle width with an additional space to allow for lateral motion of the vehicle.

The maximum truck width had been 96 inches (2.438 m) in the Code of Federal Regulations of 1956 which matches with the width of eight-foot for shipping containers. This had been increased to 102 inches (2.591 m) in 1976 which explicitly states to be read as the slightly larger metric 2.6 metres (102.36 in) width respecting international harmonization.[12] The same applies to standards in Europe which had increased the allowable size of road vehicles with a current maximum of 2.55 metres (100.39 in) for most trucks and allowing 2.6 metres (102.36 in) for refrigerator trucks. The minimum extra space had been 0.20 metres (7.87 in) and it is currently assumed to be at least 0.25 metres (9.84 in) on each side. For roads with a lower amount of traffic it is allowed to build the second or third lane in the same direction to an assumed lower width for cars like 1.75 metres (68.90 in), however this is not recommended as a design principle for new roads as changes in the amount of traffic could make for unnecessarily increased risks in the future.

The Interstate Highway standards for the U.S. Interstate Highway System uses a 12-foot (3.7 m) standard for lane width, while narrower lanes are used on lower classification roads. In Europe, as laws and road width vary by country, the minimum widths of lanes is generally between 2.5 to 3.25 metres (8.2 to 10.7 ft).[13] The federal Bundesstraße interurban network in Germany defines a minimum of 3.5 metres (11 ft 6 in) for each lane for the smallest two lane roads with an additional 0.25 metres (9.84 in) on the outer sides and shoulders being at least 1.5 metres (59.06 in) on each side. A modern Autobahn divided highway will have two lanes per direction which are 3.75 metres (12 ft 4 in) wide with an additional clearance of 0.50 metres (19.69 in) on each side, while three lanes per direction are set at 3.75 metres (12 ft 4 in) for the rightmost lane and 3.5 metres (11 ft 6 in) for the other lanes. Urban access roads and roads in low-density areas may have lanes as small as 2.75 metres (9 ft 0 in) in width per lane with shoulders being at least 1 metre (3 ft 3 in) wide.[14]

Main article: Road surface marking A typical rural American freeway (Interstate 5 in the Central Valley of California). Notice the yellow line on the left, the dashed white line in the middle, and the solid white line on the right. Also note the rumble strip to the left of the yellow line.

Painted lane markings vary widely from country to country. In the United States, Canada, Mexico, Honduras, Puerto Rico, Virgin Islands and Norway, yellow lines separate traffic going opposite directions and white separates lanes of traffic traveling the same direction, but such is not the case in many European countries.

Lane markings are mostly lines painted on the road by a road marking machine, which can adjust the marking widths according to the lane type.[15]

Traffic reports in California often refer to accidents being "in the number X lane." The California Department of Transportation (Caltrans) assigns the numbers from left to right.[16] The far left passing lane is the number 1 lane. The number of the slow lane (closest to freeway onramps/offramps) depends on the total number of lanes, and could be anywhere from 2 to 8.

For much of human history, roads did not need lane markings because most people walked or rode horses at relatively slow speeds. Another reason for not using lane markings is that they are expensive to maintain.

When automobiles, trucks, and buses came into widespread use during the first two decades of the 20th century, head-on collisions became more common.

Without the guidance provided by lane markings, drivers in the early days often erred in favor of keeping closer to the middle of the road, rather than risk going off-road into ditches or trees[citation needed]. This practice often left inadequate room for opposing traffic.

The history of lane markings is connected to the mass automobile construction in Detroit. It resulted in the formation of the first Road Commission of Wayne County, Michigan in 1906 which was trying to make roads safer (Henry Ford served on the board in the first year).[17] The commission would order the construction of the first concrete road in 1909 (the Woodard Avenue in Detroit) and it conceived the centerline for highways in 1911. Hence the chairmen of the Road Commission, Edward N. Hines is widely credited as the inventor of line markings.[18]

The introduction as a common standard is connected to June McCarroll, a physician in Indio, California who started experimenting with painting lines on roads in 1917 after she was run off a highway by a truck driver. In November 1924, after years of lobbying by Dr. McCarroll and her allies, California officially adopted a policy of painting lines on its highways. A portion of Interstate 10 near Indio has been named the Dr. June McCarroll Memorial Freeway in her honor.

black center line on an Autobahn in Germany (late 1930s)

The first lane markings in Europe were painted at an accident hotspot in the small town of Sutton Coldfield near Birmingham, England in 1921. The success of this experiment made its way to other hotspots and later standardization of white paint for line markings in Great Britain.[19]

The first lane markings in Germany were used in Berlin in 1925 using white paint for line markings and road edge markings. When the standard for the new autobahn network was conceived in the 1930s it mandated the usage of black paint for the center line for each carriageway as black was better visible on the bright surface of the concrete roads.

By 1939, lane markings had become so popular that they were officially standardized throughout the United States. The concept of line markings spread throughout the world becoming standard for most roads. Originally the lines were drawn manually with normal paint which would bleach out quickly. After the war, the first machines for line markings were invented[20] and a plastic strip was becoming standard in the 1950s which led to gradually find line markings on all roads.

Main article: Right- and left-hand traffic

Driveway

The Paving Company Costs Standard design on a wide median.[1] Stylized depiction of the design in Grand Haven, Michigan, at US 31 and Robbins Road (north to the right), showing the additional area necessary to make a turn on a narrow median.[1] 43°2′40.18″N 86°13′12.57″W / 43.0444944°N 86.2201583°W / 43.0444944; -86.2201583 (US 31 at Robbins Road, Grand Haven, Michigan)

A Michigan left is an at-grade intersection design which replaces each left turn with a U-turn and a right turn. The design was given the name due to its frequent use along roads and highways in the U.S. state of Michigan since the late 1960s.[2] In other contexts, the intersection is called a median U-turn crossover or median U-turn.[1][3] The design is also sometimes referred to as a boulevard left,[4] a boulevard turnaround,[5] a Michigan loon[6] or a "ThrU Turn" intersection.[7][8]

Two versions of signs posted along an intersecting road or street at an intersection. Top: most commonly used; Bottom: lesser-used variant.

The design occurs at intersections where at least one road is a divided highway or boulevard, and left turns onto—and usually from—the divided highway are prohibited. In almost every case, the divided highway is multi-laned in both directions. When on the secondary road, drivers are directed to turn right. Within 1⁄4 mile (400 m), they queue into a designated U-turn (or cross-over) lane in the median.

When traffic clears they complete the U-turn and go back through the intersection. Additionally, the U-turn lane is designed for one-way traffic. Similarly, traffic on the divided highway cannot turn left at an intersection with a cross street. Instead, drivers are instructed to "overshoot" the intersection, go through the U-turn lane, come back to the intersection from the opposite direction, and turn right.

When vehicles enter the cross-over area, unless markings on the ground indicate two turning lanes in the cross-over, drivers form one lane. A cross-over with two lanes is designed at high-volume cross-overs, or when the right lane turns onto an intersecting street. In this case, the right lane is reserved for vehicles completing the design. Most crossovers must be made large enough for semi-trailer trucks to complete the crossover. This large cross-over area often leads to two vehicles incorrectly lining up at a single cross-over.

The maneuver forces the driver to quickly merge into the extreme left lane to complete the turn, usually from a complete stop. The turning vehicle is potentially a hazard and may cause a disruption in the flow of traffic in the left lane.[citation needed]

When the median of a road is too narrow to allow for a standard Michigan left maneuver, a variation can be used which widens the pavement in the opposite direction of travel. This widened pavement is known as a "bulb out"[7] or a "loon" (from the pavement's aerial resemblance to the aquatic bird).[6] Such a design is sometimes referred to as a Michigan loon; in Utah, as a ThrU Turn, which is a portmanteau combining the terms "Through" (the intersection, followed by a) "U Turn".[7]

In 2013, Michigan lefts were installed in Alabama for the first time, in several locations along heavily traveled U.S. Route 280 in metro Birmingham.[9]

Tucson, Arizona, began introducing Michigan lefts in 2013, at Ina/Oracle and Grant/Oracle. Their reception has been mixed.[10]

The design is relatively common in New Orleans, Louisiana, and its suburb Metairie, where city boulevards may be split by streetcar tracks,[11] and suburban thoroughfares are often split by drainage canals.[12] Some intersections using this design are signed similarly to those in Michigan, but with more descriptive text,[13] however in some cases the only signage is "No Left Turn" and drivers are left to figure it out for themselves.[14]

Since the redevelopment of the intersection between University Boulevard (MD 193) and Colesville Road (US 29) in Silver Spring, Maryland, a Michigan left has been used to increase efficiency of traffic through an otherwise underdeveloped and congested intersection. Due to its proximity to the Capital Beltway, heavy traffic is handled more safely and efficiently.[citation needed]

A typical Michigan left layout: Telegraph Road (US 24) at Warren Road near Detroit, showing Michigan lefts 42°20′28″N 83°16′23″W / 42.341°N 83.273°W / 42.341; -83.273 (US 24 (Telegraph Road) at Warren Road, Dearborn, Michigan)

The Michigan Department of Transportation first used the modern design at the intersection of 8 Mile Road (M-102) and Livernois Avenue[15] (42°26′46″N 83°08′28″W / 42.4461°N 83.141°W / 42.4461; -83.141 (M-102 (8 Mile Road) at Livernois Avenue))[16] in Detroit in the early 1960s. The increase in traffic flow and reduction in accidents was so dramatic (a 30–60% decrease[17]) that over 700 similar intersections have been deployed throughout the state since then.[18]

North Carolina has been implementing Michigan lefts along US 17 in the southeastern part of the state, outside Wilmington.[18] In 2015, a Michigan left was constructed at the intersection of Poplar Tent Road and Derita Road in the Charlotte suburb of Concord.[citation needed]

Columbus, Ohio introduced a Michigan left at the intersection of SR 161 and Strawberry Farms Boulevard in 2012. Reception has been mixed with several accidents occurring per year.[citation needed]

At least two Michigan lefts have existed in Texas. One was located at the intersection of Fondren Road and Bellaire Boulevard in Houston from the 1980s through 2007, when it was replaced with conventional left-turn lanes. Another was built in mid-2010 in Plano at the intersection of Preston Road and Legacy Drive.[19] In January 2014, the city announced plans to revert the turn to a traditional intersection as a result of drivers' confusion.[citation needed] A section of State Highway 71 east of Austin-Bergstrom International Airport at FM 973 in Austin, Texas did have a signalized Michigan U-turn which was constructed in 2014—this was a temporary fix until the SH71 tollway over SH130 (including the re-routing of FM973) was completed in early 2016.[citation needed] There are multiple Michigan left turns currently being used along US 281 north of Loop 1604 in San Antonio. These were adopted as a short-term solution for traffic issues as development expanded north, but will likely be phased out as US 281 is elevated.[citation needed]

The city of Draper, Utah, a suburb of Salt Lake City, announced in 2011 that it would be building Utah's first "ThrU Turn" at the intersection of 12300 South and State Street, just off Interstate 15 through Salt Lake County. Construction began in summer 2011 and was completed in fall 2011.[7][20][21] Other similar intersections were implemented in South Jordan[22] and Layton.[23]

In Australia, where traffic drives on the left, the Victorian state government introduced the "P-turn", similar to the Michigan left, at one intersection in 2009. This requires right-turning vehicles to turn left then make a U-turn. As of May 2015, the intersection in the southeastern Melbourne suburb of Frankston remains the only one of its kind in the state, and local residents have called for its removal.[24]

A similar style P-turn is used in the junction of the A4 Great West Road and A3002 Boston Manor Road in Brentford, England.

The design has been proposed in Toronto, Ontario, to relieve motorists who wish to make a left-turn on roadways which will contain a proposed streetcar line by the Transit City project.

In Ottawa, Ontario, a Michigan left exists to proceed from Riverside Drive, northbound, to Bank Street northbound.

Another Michigan left exists in Windsor, Ontario, on Huron Church Road, just north of the E.C. Row Expressway, where a narrow-median variant put in place years ago is now seldom used due to the realignment of the expressway in conjunction with the construction of the Herb Gray Parkway.

In Mexico, Guadalajara has a grade-separated variation of this setup in the intersection of Mariano Otero Avenue and Manuel Gómez Morín Beltway (20°37′50″N 103°26′06″W / 20.630666°N 103.434981°W / 20.630666; -103.434981).[25] Traffic flowing through Mariano Otero is routed through an overpass above the beltway, with two access roads allowing right turn on all four possible directions; the U-turns, meanwhile, are built underneath the beltway and allow the left turn from Mariano Otero avenue to the beltway. U-turn intersections are very common throughout Mexico, particularly in Mexico City.

Brazil is also known to utilize this setup especially in São Paulo.

This is the design at some busy junctions in Hong Kong. In Hong Kong Island examples include the junction of Fleming Road and Harbour Road in Wan Chai North, and the junction of Hennessey Road and Canal Road Flyover in Wong Nai Chung. In Kowloon this design exists between Cheong Wan Road and Hong Chong Road/Salisbury Road.

The capital city of Angola, Luanda, makes widespread use of a simplified variant of this type of intersection on its two- and three-lane, median-separated throughways instead of using traffic lights. Larger junctions use this intersection type instead of much more costly grade-separated interchanges.

This type of intersection configuration, as with any engineered solution to a traffic problem, carries with it certain advantages and disadvantages and has been subject to several studies.

Studies[by whom?][when?] have shown a major reduction in left-turn collisions and a minor reduction in merging and diverging collisions, due to the shifting of left turns outside the main intersection[clarification needed].[1] In addition, it reduces the number of different traffic light phases, significantly increasing traffic flow. Because separate phases are no longer needed for left turns, this increases green time for through traffic. The effect on turning traffic is mixed.[1] Consequently, the timing of traffic signals along a highway featuring the design is made easier by the elimination of left-turn phases both on that highway and along intersecting roadways contributing to the reduction of travel times and the increased capacity of those roadways.[1]

It has been shown to enhance safety to pedestrians crossing either street at an intersection featuring the design since they only encounter through traffic and vehicles making right turns. The left-turning movement, having been eliminated, removes one source of potential vehicle-pedestrian conflict.[1] One minor disadvantage of the Michigan left is the extra distance required for the motorist to drive. Sometimes the distance to the turnaround is as far away as 1⁄4 mile (400 m) past the intersection. This design leads to each motorist driving an additional 1⁄2 mile (800 m) to make a left turn. It also results in left-turning vehicles having to stop up to three times in the execution of the turn.

Asphalt Driveway Costs

https://www.helpwikileaks.co.za/southgate/

Help Wiki Leaks Have Asphalt Services List

Asphalt Driveway Construction Parkmore

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Asphalt Driveway Construction in Parkmore except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Asphalt Installation Price

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Paving Services Quotes

The primary use (70%) of asphalt Asphalt Driveway Sealing Cost is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Driveway

Asphalt Driveway Paving Price

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Asphalt Driveway Construction Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Asphalt Surfacing Contractors Price

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Asphalt Driveway Average Cost the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Pave My Driveway Price

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Diverging diamond interchange

Asphalt Paving Companies Price

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Paving Services Quotes

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Driveway Pavers Cost Estimate

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Asphalt Contractors Price

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Commercial Paving Cost Estimate

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Asphalt Surfacing Company Price

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Concrete

Asphalt Construction Quotes

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Paver Repair Quotes

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Asphalt Contractors Near Me

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Asphalt Contractors Near Me

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Asphalt Construction Quotes

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Asphalt Surfacing Company Cost Estimate

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Paving Companies Near Me

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

The Paving Company Costs

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Road surface

Paver Repair Cost Estimate

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Paver Repair Quotes

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Asphalt Driveway Paving Price

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Brick

Asphalt Paving Cost Estimate

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Asphalt Driveway Construction in Parkmore ?

Pave My Driveway Quotes

Bleeding or flushing is shiny, black surface film of asphalt on the road surface caused by upward movement of asphalt in the pavement surface.[1][2] Common causes of bleeding are too much asphalt in asphalt concrete, hot weather, low space air void content and quality of asphalt.[3]

Bleeding is a safety concern since it results in a very smooth surface, without the texture required to prevent hydroplaning.

Permeable paving

Asphalt Driveway Near Me A single brick A wall constructed in glazed-headed Flemish bond with bricks of various shades and lengths Raw (green) Indian brick An old brick wall in English bond laid with alternating courses of headers and stretchers Bricked Front Street along the Cane River in historic Natchitoches, Louisiana

A brick is building material used to make walls, pavements and other elements in masonry construction. Traditionally, the term brick referred to a unit composed of clay, but it is now used to denote any rectangular units laid in mortar. A brick can be composed of clay-bearing soil, sand, and lime, or concrete materials. Bricks are produced in numerous classes, types, materials, and sizes which vary with region and time period, and are produced in bulk quantities. Two basic categories of bricks are fired and non-fired bricks.

Block is a similar term referring to a rectangular building unit composed of similar materials, but is usually larger than a brick. Lightweight bricks (also called lightweight blocks) are made from expanded clay aggregate.

Fired bricks are one of the longest-lasting and strongest building materials, sometimes referred to as artificial stone, and have been used since circa 5000 BC. Air-dried bricks, also known as mudbricks, have a history older than fired bricks, and have an additional ingredient of a mechanical binder such as straw.

Bricks are laid in courses and numerous patterns known as bonds, collectively known as brickwork, and may be laid in various kinds of mortar to hold the bricks together to make a durable structure.

House construction using bricks in Kerala, India The Roman Basilica Aula Palatina in Trier, Germany, built with fired bricks in the 4th century as an audience hall for Constantine I

The earliest bricks were dried brick, meaning that they were formed from clay-bearing earth or mud and dried (usually in the sun) until they were strong enough for use. The oldest discovered bricks, originally made from shaped mud and dating before 7500 BC, were found at Tell Aswad, in the upper Tigris region and in southeast Anatolia close to Diyarbakir.[1] Other more recent findings, dated between 7,000 and 6,395 BC, come from Jericho, Catal Hüyük, the ancient Egyptian fortress of Buhen, and the ancient Indus Valley cities of Mohenjo-daro, Harappa,[2] and Mehrgarh.[3] Ceramic, or fired brick was used as early as 3000 BC in early Indus Valley cities.[4]

The ancient Jetavanaramaya stupa in Anuradhapura, Sri Lanka is one of the largest brick structures in the world. The world's highest brick tower of St. Martin's Church in Landshut, Germany, completed in 1500 Malbork Castle, former Ordensburg of the Teutonic Order – biggest brick castle in the world

In pre-modern China, bricks were being used from the 2nd millennium BC at a site near Xi'an.[5] Bricks were produced on a larger scale under the Western Zhou dynasty about 3,000 years ago, and evidence for some of the first fired bricks ever produced has been discovered in ruins dating back to the Zhou.[6][7][8] The carpenter's manual Yingzao Fashi, published in 1103 at the time of the Song dynasty described the brick making process and glazing techniques then in use. Using the 17th century encyclopaedic text Tiangong Kaiwu, historian Timothy Brook outlined the brick production process of Ming Dynasty China:

"...the kilnmaster had to make sure that the temperature inside the kiln stayed at a level that caused the clay to shimmer with the colour of molten gold or silver. He also had to know when to quench the kiln with water so as to produce the surface glaze. To anonymous labourers fell the less skilled stages of brick production: mixing clay and water, driving oxen over the mixture to trample it into a thick paste, scooping the paste into standardised wooden frames (to produce a brick roughly 42 cm long, 20 cm wide, and 10 cm thick), smoothing the surfaces with a wire-strung bow, removing them from the frames, printing the fronts and backs with stamps that indicated where the bricks came from and who made them, loading the kilns with fuel (likelier wood than coal), stacking the bricks in the kiln, removing them to cool while the kilns were still hot, and bundling them into pallets for transportation. It was hot, filthy work." The brickwork of Shebeli Tower in Iran displays 12th-century craftsmanship Main article: Roman brick

Early civilisations around the Mediterranean adopted the use of fired bricks, including the Ancient Greeks and Romans. The Roman legions operated mobile kilns,[9] and built large brick structures throughout the Roman Empire, stamping the bricks with the seal of the legion.

During the Early Middle Ages the use of bricks in construction became popular in Northern Europe, after being introduced there from Northern-Western Italy. An independent style of brick architecture, known as brick Gothic (similar to Gothic architecture) flourished in places that lacked indigenous sources of rocks. Examples of this architectural style can be found in modern-day Denmark, Germany, Poland, and Russia.

This style evolved into Brick Renaissance as the stylistic changes associated with the Italian Renaissance spread to northern Europe, leading to the adoption of Renaissance elements into brick building. A clear distinction between the two styles only developed at the transition to Baroque architecture. In Lübeck, for example, Brick Renaissance is clearly recognisable in buildings equipped with terracotta reliefs by the artist Statius von Düren, who was also active at Schwerin (Schwerin Castle) and Wismar (Fürstenhof).

Chile house in Hamburg, Germany

Long-distance bulk transport of bricks and other construction equipment remained prohibitively expensive until the development of modern transportation infrastructure, with the construction of canal, roads, and railways.

Production of bricks increased massively with the onset of the Industrial Revolution and the rise in factory building in England. For reasons of speed and economy, bricks were increasingly preferred as building material to stone, even in areas where the stone was readily available. It was at this time in London that bright red brick was chosen for construction to make the buildings more visible in the heavy fog and to help prevent traffic accidents.[10]

The transition from the traditional method of production known as hand-moulding to a mechanised form of mass-production slowly took place during the first half of the nineteenth century. Possibly the first successful brick-making machine was patented by Henry Clayton, employed at the Atlas Works in Middlesex, England, in 1855, and was capable of producing up to 25,000 bricks daily with minimal supervision.[11] His mechanical apparatus soon achieved widespread attention after it was adopted for use by the South Eastern Railway Company for brick-making at their factory near Folkestone.[12] The Bradley & Craven Ltd ‘Stiff-Plastic Brickmaking Machine’ was patented in 1853, apparently predating Clayton. Bradley & Craven went on to be a dominant manufacturer of brickmaking machinery.[13] Predating both Clayton and Bradley & Craven Ltd. however was the brick making machine patented by Richard A. Ver Valen of Haverstraw, New York in 1852.[14]

The demand for high office building construction at the turn of the 20th century led to a much greater use of cast and wrought iron, and later, steel and concrete. The use of brick for skyscraper construction severely limited the size of the building – the Monadnock Building, built in 1896 in Chicago, required exceptionally thick walls to maintain the structural integrity of its 17 storeys.

Following pioneering work in the 1950s at the Swiss Federal Institute of Technology and the Building Research Establishment in Watford, UK, the use of improved masonry for the construction of tall structures up to 18 storeys high was made viable. However, the use of brick has largely remained restricted to small to medium-sized buildings, as steel and concrete remain superior materials for high-rise construction.[15]

This wall in Beacon Hill, Boston shows different types of brickwork and stone foundations

There are thousands of types of bricks that are named for their use, size, forming method, origin, quality, texture, and/or materials.

Categorized by manufacture method:

Categorized by use:

Specialized use bricks:

Bricks named for place of origin:

Brick making at the beginning of the 20th century.

Three basic types of brick are un-fired, fired, and chemically set bricks. Each type is manufactured differently.

Main article: Mudbrick

Unfired bricks, also known as mudbricks, are made from a wet, clay-containing soil mixed with straw or similar binders. They are air-dried until ready for use.

Raw bricks sun-drying before being fired

Fired bricks are burned in a kiln which makes them durable. Modern, fired, clay bricks are formed in one of three processes – soft mud, dry press, or extruded. Depending on the country, either the extruded or soft mud method is the most common, since they are the most economical.

Normally, bricks contain the following ingredients:[16]

  1. Silica (sand) – 50% to 60% by weight
  2. Alumina (clay) – 20% to 30% by weight
  3. Lime – 2 to 5% by weight
  4. Iron oxide – ≤ 7% by weight
  5. Magnesia – less than 1% by weight

Three main methods are used for shaping the raw materials into bricks to be fired:

Xhosa brickmaker at kiln near Ngcobo in 2007

In many modern brickworks, bricks are usually fired in a continuously fired tunnel kiln, in which the bricks are fired as they move slowly through the kiln on conveyors, rails, or kiln cars, which achieves a more consistent brick product. The bricks often have lime, ash, and organic matter added, which accelerates the burning process.

A brickmaker in India – Tashrih al-aqvam (1825)

The other major kiln type is the Bull's Trench Kiln (BTK), based on a design developed by British engineer W. Bull in the late 19th century.

An oval or circular trench is dug, 6–9 metres wide, 2-2.5 metres deep, and 100–150 metres in circumference. A tall exhaust chimney is constructed in the centre. Half or more of the trench is filled with "green" (unfired) bricks which are stacked in an open lattice pattern to allow airflow. The lattice is capped with a roofing layer of finished brick.

In operation, new green bricks, along with roofing bricks, are stacked at one end of the brick pile; cooled finished bricks are removed from the other end for transport to their destinations. In the middle, the brick workers create a firing zone by dropping fuel (coal, wood, oil, debris, and so on) through access holes in the roof above the trench.

The advantage of the BTK design is a much greater energy efficiency compared with clamp or scove kilns. Sheet metal or boards are used to route the airflow through the brick lattice so that fresh air flows first through the recently burned bricks, heating the air, then through the active burning zone. The air continues through the green brick zone (pre-heating and drying the bricks), and finally out the chimney, where the rising gases create suction that pulls air through the system. The reuse of heated air yields savings in fuel cost.

As with the rail process, the BTK process is continuous. A half-dozen labourers working around the clock can fire approximately 15,000–25,000 bricks a day. Unlike the rail process, in the BTK process the bricks do not move. Instead, the locations at which the bricks are loaded, fired, and unloaded gradually rotate through the trench.[17]

Yellow London Stocks at Waterloo station

The fired colour of tired clay bricks is influenced by the chemical and mineral content of the raw materials, the firing temperature, and the atmosphere in the kiln. For example, pink bricks are the result of a high iron content, white or yellow bricks have a higher lime content. Most bricks burn to various red hues; as the temperature is increased the colour moves through dark red, purple, and then to brown or grey at around 1,300 °C (2,372 °F). The names of bricks may reflect their origin and colour, such as London stock brick and Cambridgeshire White. Brick tinting may be performed to change the colour of bricks to blend-in areas of brickwork with the surrounding masonry.

An impervious and ornamental surface may be laid on brick either by salt glazing, in which salt is added during the burning process, or by the use of a slip, which is a glaze material into which the bricks are dipped. Subsequent reheating in the kiln fuses the slip into a glazed surface integral with the brick base.

Chemically set bricks are not fired but may have the curing process accelerated by the application of heat and pressure in an autoclave.

Swedish Mexitegel is a sand-lime or lime-cement brick.

Calcium-silicate bricks are also called sandlime or flintlime bricks, depending on their ingredients. Rather than being made with clay they are made with lime binding the silicate material. The raw materials for calcium-silicate bricks include lime mixed in a proportion of about 1 to 10 with sand, quartz, crushed flint, or crushed siliceous rock together with mineral colourants. The materials are mixed and left until the lime is completely hydrated; the mixture is then pressed into moulds and cured in an autoclave for three to fourteen hours to speed the chemical hardening.[18] The finished bricks are very accurate and uniform, although the sharp arrises need careful handling to avoid damage to brick and bricklayer. The bricks can be made in a variety of colours; white, black, buff, and grey-blues are common, and pastel shades can be achieved. This type of brick is common in Sweden, especially in houses built or renovated in the 1970s. In India these are known as fly ash bricks, manufactured using the FaL-G (fly ash, lime, and gypsum) process. Calcium-silicate bricks are also manufactured in Canada and the United States, and meet the criteria set forth in ASTM C73 – 10 Standard Specification for Calcium Silicate Brick (Sand-Lime Brick).

Main article: Concrete masonry unit A concrete brick-making assembly line in Guilinyang Town, Hainan, China. This operation produces a pallet containing 42 bricks, approximately every 30 seconds.

Bricks formed from concrete are usually termed as blocks, and are typically pale grey. They are made from a dry, small aggregate concrete which is formed in steel moulds by vibration and compaction in either an "egglayer" or static machine. The finished blocks are cured, rather than fired, using low-pressure steam. Concrete blocks are manufactured in a much wider range of shapes and sizes than clay bricks and are also available with a wider range of face treatments – a number of which simulate the appearance of clay bricks.

Concrete bricks are available in many colours and as an engineering brick made with sulfate-resisting Portland cement or equivalent. When made with adequate amount of cement they are suitable for harsh environments such as wet conditions and retaining walls. They are made to standards BS 6073, EN 771-3 or ASTM C55. Concrete bricks contract or shrink so they need movement joints every 5 to 6 metres, but are similar to other bricks of similar density in thermal and sound resistance and fire resistance.[18]

Main article: Compressed earth block

Compressed earth blocks are made mostly from slightly moistened local soils compressed with a mechanical hydraulic press or manual lever press. A small amount of a cement binder may be added, resulting in a stabilised compressed earth block.

Comparison of typical brick sizes of assorted countries with isometric projections with dimensions in mm Loose bricks

For efficient handling and laying, bricks must be small enough and light enough to be picked up by the bricklayer using one hand (leaving the other hand free for the trowel). Bricks are usually laid flat, and as a result, the effective limit on the width of a brick is set by the distance which can conveniently be spanned between the thumb and fingers of one hand, normally about four inches (about 100 mm). In most cases, the length of a brick is about twice its width, about eight inches (about 200 mm) or slightly more. This allows bricks to be laid bonded in a structure which increases stability and strength (for an example, see the illustration of bricks laid in English bond, at the head of this article). The wall is built using alternating courses of stretchers, bricks laid longways, and headers, bricks laid crossways. The headers tie the wall together over its width. In fact, this wall is built in a variation of English bond called English cross bond where the successive layers of stretchers are displaced horizontally from each other by half a brick length. In true English bond, the perpendicular lines of the stretcher courses are in line with each other.

A bigger brick makes for a thicker (and thus more insulating) wall. Historically, this meant that bigger bricks were necessary in colder climates (see for instance the slightly larger size of the Russian brick in table below), while a smaller brick was adequate, and more economical, in warmer regions. A notable illustration of this correlation is the Green Gate in Gdansk; built in 1571 of imported Dutch brick, too small for the colder climate of Gdansk, it was notorious for being a chilly and drafty residence. Nowadays this is no longer an issue, as modern walls typically incorporate specialised insulation materials.

The correct brick for a job can be selected from a choice of colour, surface texture, density, weight, absorption, and pore structure, thermal characteristics, thermal and moisture movement, and fire resistance.

In England, the length and width of the common brick has remained fairly constant over the centuries (but see brick tax), but the depth has varied from about two inches (about 51 mm) or smaller in earlier times to about two and a half inches (about 64 mm) more recently. In the United Kingdom, the usual size of a modern brick is 215 × 102.5 × 65 mm (about ​8 5⁄8 × ​4 1⁄8 × ​2 5⁄8 inches), which, with a nominal 10 mm (​3⁄8 inch) mortar joint, forms a unit size of 225 × 112.5 × 75 mm (9 × ​4 1⁄2 × 3 inches), for a ratio of 6:3:2.

In the United States, modern standard bricks are specified for various uses;[19] most are sized at about 8 × ​3 5⁄8  × ​2 1⁄4 inches (203 × 92 × 57 mm). The more commonly used is the modular brick ​7 5⁄8  × ​3 5⁄8  × ​2 1⁄4 inches (194 × 92 × 57 mm). This modular brick of ​7 5⁄8 with a ​3⁄8 mortar joint eases the calculation of the number of bricks in a given wall.[20]

Some brickmakers create innovative sizes and shapes for bricks used for plastering (and therefore not visible on the inside of the building) where their inherent mechanical properties are more important than their visual ones.[21] These bricks are usually slightly larger, but not as large as blocks and offer the following advantages:

Blocks have a much greater range of sizes. Standard co-ordinating sizes in length and height (in mm) include 400×200, 450×150, 450×200, 450×225, 450×300, 600×150, 600×200, and 600×225; depths (work size, mm) include 60, 75, 90, 100, 115, 140, 150, 190, 200, 225, and 250. They are usable across this range as they are lighter than clay bricks. The density of solid clay bricks is around 2000 kg/m³: this is reduced by frogging, hollow bricks, and so on, but aerated autoclaved concrete, even as a solid brick, can have densities in the range of 450–850 kg/m³.

Bricks may also be classified as solid (less than 25% perforations by volume, although the brick may be "frogged," having indentations on one of the longer faces), perforated (containing a pattern of small holes through the brick, removing no more than 25% of the volume), cellular (containing a pattern of holes removing more than 20% of the volume, but closed on one face), or hollow (containing a pattern of large holes removing more than 25% of the brick's volume). Blocks may be solid, cellular or hollow

The term "frog" can refer to the indentation or the implement used to make it. Modern brickmakers usually use plastic frogs but in the past they were made of wood.

Brick arch from a vault in Roman Bath – England A brick section of the old Dixie Highway, United States

The compressive strength of bricks produced in the United States ranges from about 1000 lbf/in² to 15,000 lbf/in² (7 to 105 MPa or N/mm² ), varying according to the use to which the brick are to be put. In England clay bricks can have strengths of up to 100 MPa, although a common house brick is likely to show a range of 20–40 MPa.

In the United States, bricks have been used for both buildings and pavements. Examples of brick use in buildings can be seen in colonial era buildings and other notable structures around the country. Bricks have been used in pavements especially during the late 19th century and early 20th century. The introduction of asphalt and concrete reduced the use of brick pavements, but it is used as a method of traffic calming or as a decorative surface in pedestrian precincts. For example, in the early 1900s, most of the streets in the city of Grand Rapids, Michigan, were paved with bricks. Today, there are only about 20 blocks of brick-paved streets remaining (totalling less than 0.5 percent of all the streets in the city limits).[22] Much like in Grand Rapids, municipalities across the United States began replacing brick streets with inexpensive asphalt concrete by the mid-20th century.[23]

Bricks in the metallurgy and glass industries are often used for lining furnaces, in particular refractory bricks such as silica, magnesia, chamotte and neutral (chromomagnesite) refractory bricks. This type of brick must have good thermal shock resistance, refractoriness under load, high melting point, and satisfactory porosity. There is a large refractory brick industry, especially in the United Kingdom, Japan, the United States, Belgium and the Netherlands.

In Northwest Europe, bricks have been used in construction for centuries. Until recently, almost all houses were built almost entirely from bricks. Although many houses are now built using a mixture of concrete blocks and other materials, many houses are skinned with a layer of bricks on the outside for aesthetic appeal.

Engineering bricks are used where strength, low water porosity or acid (flue gas) resistance are needed.

In the UK a red brick university is one founded in the late 19th or early 20th century. The term is used to refer to such institutions collectively to distinguish them from the older Oxbridge institutions, and refers to the use of bricks, as opposed to stone, in their buildings.

Colombian architect Rogelio Salmona was noted for his extensive use of red bricks in his buildings and for using natural shapes like spirals, radial geometry and curves in his designs.[24] Most buildings in Colombia are made of brick, given the abundance of clay in equatorial countries like this one.

Starting in the 20th century, the use of brickwork declined in some areas due to concerns with earthquakes. Earthquakes such as the San Francisco earthquake of 1906 and the 1933 Long Beach earthquake revealed the weaknesses of unreinforced brick masonry in earthquake-prone areas. During seismic events, the mortar cracks and crumbles, and the bricks are no longer held together. Brick masonry with steel reinforcement, which helps hold the masonry together during earthquakes, was used to replace many of the unreinforced masonry buildings. Retrofitting older unreinforced masonry structures has been mandated in many jurisdictions.

A panorama after the 1906 San Francisco earthquake. Commercial Paving Cost Estimate

https://www.helpwikileaks.co.za/southgate/

Help Wiki Leaks Have Asphalt Services List

Asphalt Road Construction Germiston

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Asphalt Road Construction in Germiston  except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Paver Repair Quotes

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Driveway Paving Contractors Near Me

The primary use (70%) of asphalt Asphalt Repair Companies Near Me is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Permeable paving

Driveway Paving Contractors Near Me

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Asphalt Road Construction Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Paving Specialists Near Me

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  List Of Asphalt Companies the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Asphalt Paving Cost Estimate

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Brick

Asphalt Paving Companies Price

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Asphalt Paving Cost Estimate

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Paving Services Quotes

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Commercial Paving Cost Estimate

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Driveway Pavers Near Me

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Paving Contractors Costs

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Sealcoat

Paving Contractors Costs

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Asphalt Driveway Price

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Asphalt Driveway Paving Price

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Paving Services Quotes

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Asphalt Repair Costs

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

The Paving Company Costs

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Asphalt Surfacing Company Price

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

The Paving Company Near Me

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Crocodile cracking

Asphalt Surfacing Company Cost Estimate

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Driveway Paving Contractors Cost Estimate

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Paving Companies Quotes

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Sealcoat

Asphalt Repair Cost Estimate

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Asphalt Road Construction in Germiston ?

Asphalt Paving Price A diagram illustrating traffic movements in the interchange Plan of rejected diverging diamond interchange in Findlay, Ohio

A diverging diamond interchange (DDI), also called a double crossover diamond interchange (DCD),[1] is a type of diamond interchange in which the two directions of traffic on the non-freeway road cross to the opposite side on both sides of the bridge at the freeway. It is unusual in that it requires traffic on the freeway overpass (or underpass) to briefly drive on the opposite side of the road from what is customary for the jurisdiction. The crossover "X" sections can either be traffic-light intersections or one-side overpasses to travel above the opposite lanes without stopping, to allow nonstop traffic flow when relatively sparse traffic.

Like the continuous flow intersection, the diverging diamond interchange allows for two-phase operation at all signalized intersections within the interchange. This is a significant improvement in safety, since no long turns (e.g. left turns where traffic drives on the right side of the road) must clear opposing traffic and all movements are discrete, with most controlled by traffic signals.[2] Its at-grade variant can be seen as a two-leg continuous flow intersection.[3]

Additionally, the design can improve the efficiency of an interchange, as the lost time for various phases in the cycle can be redistributed as green time—there are only two clearance intervals (the time for traffic signals to change from green to yellow to red) instead of the six or more found in other interchange designs.

A diverging diamond can be constructed for limited cost, at an existing straight-line bridge, by building crisscross intersections outside the bridge ramps to switch traffic lanes before entering the bridge. The switchover lanes, each with 2 side ramps, introduce a new risk of drivers turning onto an empty, wrong, do-not-enter, exit-lane and driving wrongway down a freeway exit ramp to confront high-speed, oncoming traffic. Studies have analyzed various roadsigns to reduce similar driver errors.

Diverging diamond roads have been used in France since the 1970s. However, the diverging diamond interchange was listed by Popular Science magazine as one of the best innovations in 2009 (engineering category) in "Best of What's New 2009".[4]

Pictures from the first diverging diamond interchange in the United States, in Springfield, Missouri
Top left: Traffic enters the interchange along Missouri Route 13
Top right: Traffic crosses over to the left side of the road
Bottom left: Traffic crosses over Interstate 44
Bottom right:Traffic crosses back over to the right side of the road. Southbound approach to the I-44/Route 13 interchange in Springfield

Prior to 2009 the only known diverging diamond interchanges were in France in the communities of Versailles, Le Perreux-sur-Marne (A4 at N486) and Seclin, all built in the 1970s.[5] (The ramps of the first two have been reconfigured to accommodate ramps of other interchanges, but they continue to function as diverging diamond interchanges.)

Despite the fact that such interchanges already existed, the idea for the DDI was "reinvented" around 2000, inspired by the former "synchronized split-phasing" type freeway-to-freeway interchange between Interstate 95 and I-695 north of Baltimore.[6]

In 2005, the Ohio Department of Transportation (ODOT) considered reconfiguring the existing interchange on Interstate 75 at U.S. Route 224 and State Route 15 west of Findlay as a diverging diamond interchange to improve traffic flow. Had it been constructed, it would have been the first DDI in the United States.[7] By 2006, ODOT had reconsidered, instead adding lanes to the existing overpass.[8][9]

The Missouri Department of Transportation was the first US agency to construct one, in Springfield at the junction between I-44 and Missouri Route 13 (at 37°15′01″N 93°18′39″W / 37.2503°N 93.3107°W / 37.2503; -93.3107 (Springfield, Missouri diverging diamond interchange)). Construction began the week of January 12, 2009, and the interchange opened on June 21, 2009.[10][11] This interchange was a conversion of an existing standard diamond interchange, and used the existing bridge.

The first interchange in Canada opened on August 13, 2017 at Macleod Trail and 162 Avenue South in Calgary, Alberta.[12]

The interchange in Seclin (at 50°32′41″N 3°3′21″E / 50.54472°N 3.05583°E / 50.54472; 3.05583) between the A1 and Route d'Avelin was somewhat more specialized than in the diagram at right: eastbound traffic on Route d'Avelin intending to enter the A1 northbound must keep left and cross the northernmost bridge before turning left to proceed north onto A1; eastbound traffic continuing east on Route d'Avelin must select a single center lane, merge with A1 traffic that is exiting to proceed east, and cross a center bridge. All westbound traffic that is continuing west or turning south onto A1 uses the southernmost bridge.

Additional research was conducted by a partnership of the Virginia Polytechnic Institute and State University and the Turner-Fairbank Highway Research Center and published by Ohio Section of the Institute of Transportation Engineers.[13] The Federal Highway Administration released a publication titled "Alternative Intersections/Interchanges: Informational Report (AIIR)" [14] with a chapter dedicated to this design.

As of January 19, 2018, 106 DDIs were operational across the world including:

3D computer generated DCMI DCMI traffic flow patterns

A free-flowing interchange variant, patented in 2015,[21] has received recent attention.[22][23][24] Called the double crossover merging interchange (DCMI), it includes elements from the diverging diamond interchange, the tight diamond interchange, and the stack interchange. It eliminates the disadvantages of weaving and of merging into the outside lane from which the standard DDI variation suffers. As of 2016, no such interchanges have been constructed.

Driveway

Paving Companies Near Me Thru lanes indicated by arrows on California CR G4 (Montague Expressway) in Silicon Valley.

In the context of traffic control, a lane is part of a roadway (carriageway) that is designated for use by a single line of vehicles, to control and guide drivers and reduce traffic conflicts.[1] Most public roads (highways) have at least two lanes, one for traffic in each direction, separated by lane markings. On multilane roadways and busier two-lane roads, lanes are designated with road surface markings. Major highways often have two multi-lane roadways separated by a median.

Some roads and bridges that carry very low volumes of traffic are less than 15 feet (4.6 m) wide, and are only a single lane wide. Vehicles travelling in opposite directions must slow or stop to pass each other. In rural areas, these are often called country lanes. In urban areas, alleys are often only one lane wide. Urban and suburban one lane roads are often designated for one-way traffic.

Lane capacity varies widely due to conditions such as neighboring lanes, lane width, elements next to the road, number of driveways, presence of parking, speed limits, number of heavy vehicles and so on – the range can be as low as 1000 passenger cars / hour to as high as 4800 passenger cars /hour but mostly falls between 1500 and 2400 passenger cars / hour.[2]

The Ontario Highway 401 in the Greater Toronto area, with 17 travel lanes in 6 separate carriageways visible in the midground. Turning lane on the Rodovia BR-101 (Brazil) Play media Changing lanes, Gothenburg, Sweden Transfer lanes, connecting surface collector lanes with through lanes between two tunnels A left-turn merging lane in Germany, needing explanation by a crafted sign These usages lead to the phrases life in the slow lane and life in the fast lane, used to describe relaxed or busy lifestyles, respectively and used as the titles of various books and songs.

While in general, wider lanes are associated with a reduction in crashes,[7] in urban settings both narrow (less than 2.8 m) and wide (over 3.1~3.2 m) lanes increase crash risks.[8] Wider lanes (over 3.3~3.4m) are associated with 33% higher impact speeds, as well as higher crash rates. Carrying capacity is also maximal at a width of 3 to 3.1 metres (9.8 to 10.2 ft), both for motor traffic and for bicycles. Pedestrian volume declines as lanes widen, and intersections with narrower lanes provide the highest capacity for bicycles.[9] As lane width decreases, traffic speed diminishes.[10]

Advocates for safety of people walking and people on bikes, and many new urbanists disagree with traditional thinking in traffic engineering, saying that safety and capacity are not adversely impacted by reducing lanes widths to as little as 10 feet (3.0 m).[11] Moreover, wider travel lanes also increase exposure and crossing distance for pedestrians at intersections and midblock crossings.

assumed widths and heights in road design for Europe (in meters)

The widths of vehicle lanes typically vary from 9 to 15 feet (2.7 to 4.6 m). Lane widths are commonly narrower on low volume roads and wider on higher volume roads. The lane width depends on the assumed maximum vehicle width with an additional space to allow for lateral motion of the vehicle.

The maximum truck width had been 96 inches (2.438 m) in the Code of Federal Regulations of 1956 which matches with the width of eight-foot for shipping containers. This had been increased to 102 inches (2.591 m) in 1976 which explicitly states to be read as the slightly larger metric 2.6 metres (102.36 in) width respecting international harmonization.[12] The same applies to standards in Europe which had increased the allowable size of road vehicles with a current maximum of 2.55 metres (100.39 in) for most trucks and allowing 2.6 metres (102.36 in) for refrigerator trucks. The minimum extra space had been 0.20 metres (7.87 in) and it is currently assumed to be at least 0.25 metres (9.84 in) on each side. For roads with a lower amount of traffic it is allowed to build the second or third lane in the same direction to an assumed lower width for cars like 1.75 metres (68.90 in), however this is not recommended as a design principle for new roads as changes in the amount of traffic could make for unnecessarily increased risks in the future.

The Interstate Highway standards for the U.S. Interstate Highway System uses a 12-foot (3.7 m) standard for lane width, while narrower lanes are used on lower classification roads. In Europe, as laws and road width vary by country, the minimum widths of lanes is generally between 2.5 to 3.25 metres (8.2 to 10.7 ft).[13] The federal Bundesstraße interurban network in Germany defines a minimum of 3.5 metres (11 ft 6 in) for each lane for the smallest two lane roads with an additional 0.25 metres (9.84 in) on the outer sides and shoulders being at least 1.5 metres (59.06 in) on each side. A modern Autobahn divided highway will have two lanes per direction which are 3.75 metres (12 ft 4 in) wide with an additional clearance of 0.50 metres (19.69 in) on each side, while three lanes per direction are set at 3.75 metres (12 ft 4 in) for the rightmost lane and 3.5 metres (11 ft 6 in) for the other lanes. Urban access roads and roads in low-density areas may have lanes as small as 2.75 metres (9 ft 0 in) in width per lane with shoulders being at least 1 metre (3 ft 3 in) wide.[14]

Main article: Road surface marking A typical rural American freeway (Interstate 5 in the Central Valley of California). Notice the yellow line on the left, the dashed white line in the middle, and the solid white line on the right. Also note the rumble strip to the left of the yellow line.

Painted lane markings vary widely from country to country. In the United States, Canada, Mexico, Honduras, Puerto Rico, Virgin Islands and Norway, yellow lines separate traffic going opposite directions and white separates lanes of traffic traveling the same direction, but such is not the case in many European countries.

Lane markings are mostly lines painted on the road by a road marking machine, which can adjust the marking widths according to the lane type.[15]

Traffic reports in California often refer to accidents being "in the number X lane." The California Department of Transportation (Caltrans) assigns the numbers from left to right.[16] The far left passing lane is the number 1 lane. The number of the slow lane (closest to freeway onramps/offramps) depends on the total number of lanes, and could be anywhere from 2 to 8.

For much of human history, roads did not need lane markings because most people walked or rode horses at relatively slow speeds. Another reason for not using lane markings is that they are expensive to maintain.

When automobiles, trucks, and buses came into widespread use during the first two decades of the 20th century, head-on collisions became more common.

Without the guidance provided by lane markings, drivers in the early days often erred in favor of keeping closer to the middle of the road, rather than risk going off-road into ditches or trees[citation needed]. This practice often left inadequate room for opposing traffic.

The history of lane markings is connected to the mass automobile construction in Detroit. It resulted in the formation of the first Road Commission of Wayne County, Michigan in 1906 which was trying to make roads safer (Henry Ford served on the board in the first year).[17] The commission would order the construction of the first concrete road in 1909 (the Woodard Avenue in Detroit) and it conceived the centerline for highways in 1911. Hence the chairmen of the Road Commission, Edward N. Hines is widely credited as the inventor of line markings.[18]

The introduction as a common standard is connected to June McCarroll, a physician in Indio, California who started experimenting with painting lines on roads in 1917 after she was run off a highway by a truck driver. In November 1924, after years of lobbying by Dr. McCarroll and her allies, California officially adopted a policy of painting lines on its highways. A portion of Interstate 10 near Indio has been named the Dr. June McCarroll Memorial Freeway in her honor.

black center line on an Autobahn in Germany (late 1930s)

The first lane markings in Europe were painted at an accident hotspot in the small town of Sutton Coldfield near Birmingham, England in 1921. The success of this experiment made its way to other hotspots and later standardization of white paint for line markings in Great Britain.[19]

The first lane markings in Germany were used in Berlin in 1925 using white paint for line markings and road edge markings. When the standard for the new autobahn network was conceived in the 1930s it mandated the usage of black paint for the center line for each carriageway as black was better visible on the bright surface of the concrete roads.

By 1939, lane markings had become so popular that they were officially standardized throughout the United States. The concept of line markings spread throughout the world becoming standard for most roads. Originally the lines were drawn manually with normal paint which would bleach out quickly. After the war, the first machines for line markings were invented[20] and a plastic strip was becoming standard in the 1950s which led to gradually find line markings on all roads.

Main article: Right- and left-hand traffic Commercial Paving Cost Estimate

https://www.helpwikileaks.co.za/southgate/

Help Wiki Leaks Have Asphalt Services List

Asphalt Construction Johannesburg south

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Asphalt Construction in Johannesburg south except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Asphalt Paving Price

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Commercial Paving Price

The primary use (70%) of asphalt Asphalt Sealing Companies is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Asphalt concrete

Asphalt Repair Costs

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Asphalt Construction Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Driveway Paving Contractors Near Me

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Top Asphalt Companies the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

The Paving Company Costs

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Crocodile cracking

Asphalt Paving Cost Estimate

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Asphalt Contractors Near Me

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Paving Companies Quotes

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Asphalt Companies Costs

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Paving Cost Estimate

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Residential Paving Companies Costs

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Permeable paving

Asphalt Paving Cost Estimate

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Asphalt Companies Costs

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Paving Contractors Costs

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Driveway Paving Contractors Cost Estimate

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Paving Companies Near Me

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Paving Contractors Costs

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Driveway Pavers Near Me

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Asphalt Paving Cost Estimate

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Macadam

Paver Repair Cost Estimate

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Residential Paving Companies Quotes

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Asphalt Paving Cost Estimate

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Diverging diamond interchange

Asphalt Paving Cost Estimate

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Asphalt Construction in Johannesburg south ?

Asphalt Repair Quotes

Bleeding or flushing is shiny, black surface film of asphalt on the road surface caused by upward movement of asphalt in the pavement surface.[1][2] Common causes of bleeding are too much asphalt in asphalt concrete, hot weather, low space air void content and quality of asphalt.[3]

Bleeding is a safety concern since it results in a very smooth surface, without the texture required to prevent hydroplaning.

Macadam

Asphalt Surfacing Company Cost Estimate A diagram illustrating traffic movements in the interchange Plan of rejected diverging diamond interchange in Findlay, Ohio

A diverging diamond interchange (DDI), also called a double crossover diamond interchange (DCD),[1] is a type of diamond interchange in which the two directions of traffic on the non-freeway road cross to the opposite side on both sides of the bridge at the freeway. It is unusual in that it requires traffic on the freeway overpass (or underpass) to briefly drive on the opposite side of the road from what is customary for the jurisdiction. The crossover "X" sections can either be traffic-light intersections or one-side overpasses to travel above the opposite lanes without stopping, to allow nonstop traffic flow when relatively sparse traffic.

Like the continuous flow intersection, the diverging diamond interchange allows for two-phase operation at all signalized intersections within the interchange. This is a significant improvement in safety, since no long turns (e.g. left turns where traffic drives on the right side of the road) must clear opposing traffic and all movements are discrete, with most controlled by traffic signals.[2] Its at-grade variant can be seen as a two-leg continuous flow intersection.[3]

Additionally, the design can improve the efficiency of an interchange, as the lost time for various phases in the cycle can be redistributed as green time—there are only two clearance intervals (the time for traffic signals to change from green to yellow to red) instead of the six or more found in other interchange designs.

A diverging diamond can be constructed for limited cost, at an existing straight-line bridge, by building crisscross intersections outside the bridge ramps to switch traffic lanes before entering the bridge. The switchover lanes, each with 2 side ramps, introduce a new risk of drivers turning onto an empty, wrong, do-not-enter, exit-lane and driving wrongway down a freeway exit ramp to confront high-speed, oncoming traffic. Studies have analyzed various roadsigns to reduce similar driver errors.

Diverging diamond roads have been used in France since the 1970s. However, the diverging diamond interchange was listed by Popular Science magazine as one of the best innovations in 2009 (engineering category) in "Best of What's New 2009".[4]

Pictures from the first diverging diamond interchange in the United States, in Springfield, Missouri
Top left: Traffic enters the interchange along Missouri Route 13
Top right: Traffic crosses over to the left side of the road
Bottom left: Traffic crosses over Interstate 44
Bottom right:Traffic crosses back over to the right side of the road. Southbound approach to the I-44/Route 13 interchange in Springfield

Prior to 2009 the only known diverging diamond interchanges were in France in the communities of Versailles, Le Perreux-sur-Marne (A4 at N486) and Seclin, all built in the 1970s.[5] (The ramps of the first two have been reconfigured to accommodate ramps of other interchanges, but they continue to function as diverging diamond interchanges.)

Despite the fact that such interchanges already existed, the idea for the DDI was "reinvented" around 2000, inspired by the former "synchronized split-phasing" type freeway-to-freeway interchange between Interstate 95 and I-695 north of Baltimore.[6]

In 2005, the Ohio Department of Transportation (ODOT) considered reconfiguring the existing interchange on Interstate 75 at U.S. Route 224 and State Route 15 west of Findlay as a diverging diamond interchange to improve traffic flow. Had it been constructed, it would have been the first DDI in the United States.[7] By 2006, ODOT had reconsidered, instead adding lanes to the existing overpass.[8][9]

The Missouri Department of Transportation was the first US agency to construct one, in Springfield at the junction between I-44 and Missouri Route 13 (at 37°15′01″N 93°18′39″W / 37.2503°N 93.3107°W / 37.2503; -93.3107 (Springfield, Missouri diverging diamond interchange)). Construction began the week of January 12, 2009, and the interchange opened on June 21, 2009.[10][11] This interchange was a conversion of an existing standard diamond interchange, and used the existing bridge.

The first interchange in Canada opened on August 13, 2017 at Macleod Trail and 162 Avenue South in Calgary, Alberta.[12]

The interchange in Seclin (at 50°32′41″N 3°3′21″E / 50.54472°N 3.05583°E / 50.54472; 3.05583) between the A1 and Route d'Avelin was somewhat more specialized than in the diagram at right: eastbound traffic on Route d'Avelin intending to enter the A1 northbound must keep left and cross the northernmost bridge before turning left to proceed north onto A1; eastbound traffic continuing east on Route d'Avelin must select a single center lane, merge with A1 traffic that is exiting to proceed east, and cross a center bridge. All westbound traffic that is continuing west or turning south onto A1 uses the southernmost bridge.

Additional research was conducted by a partnership of the Virginia Polytechnic Institute and State University and the Turner-Fairbank Highway Research Center and published by Ohio Section of the Institute of Transportation Engineers.[13] The Federal Highway Administration released a publication titled "Alternative Intersections/Interchanges: Informational Report (AIIR)" [14] with a chapter dedicated to this design.

As of January 19, 2018, 106 DDIs were operational across the world including:

3D computer generated DCMI DCMI traffic flow patterns

A free-flowing interchange variant, patented in 2015,[21] has received recent attention.[22][23][24] Called the double crossover merging interchange (DCMI), it includes elements from the diverging diamond interchange, the tight diamond interchange, and the stack interchange. It eliminates the disadvantages of weaving and of merging into the outside lane from which the standard DDI variation suffers. As of 2016, no such interchanges have been constructed.

Paving Specialists Near Me

https://www.helpwikileaks.co.za/southgate/

Help Wiki Leaks Have Asphalt Services List

Commercial Paving Services Randburg

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Commercial Paving Services in Randburg except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Asphalt Paving Price

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Asphalt Driveway Price

The primary use (70%) of asphalt Asphalt Repair Companies Near Me is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Alley

Paving Services Price

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Commercial Paving Services Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Asphalt Driveway Costs

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Asphalt Cost For Driveway the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Driveway Paving Contractors Cost Estimate

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Driveway

Asphalt Repair Quotes

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Asphalt Paving Price

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Commercial Paving Quotes

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Asphalt Driveway Repair Price

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Pave My Driveway Costs

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Commercial Paving Cost Estimate

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Bleeding (roads)

Asphalt Driveway Price

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Asphalt Surfacing Company Cost Estimate

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Paving Companies Quotes

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Paving Companies Quotes

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Paving Services Price

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Asphalt Repair Quotes

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Pave My Driveway Costs

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Paving Services Quotes

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Alley

Asphalt Paving Cost Estimate

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Residential Paving Cost Estimate

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Asphalt Contractors Near Me

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Boulevard

Paver Repair Quotes

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Commercial Paving Services in Randburg ?

The Paving Company Costs Thru lanes indicated by arrows on California CR G4 (Montague Expressway) in Silicon Valley.

In the context of traffic control, a lane is part of a roadway (carriageway) that is designated for use by a single line of vehicles, to control and guide drivers and reduce traffic conflicts.[1] Most public roads (highways) have at least two lanes, one for traffic in each direction, separated by lane markings. On multilane roadways and busier two-lane roads, lanes are designated with road surface markings. Major highways often have two multi-lane roadways separated by a median.

Some roads and bridges that carry very low volumes of traffic are less than 15 feet (4.6 m) wide, and are only a single lane wide. Vehicles travelling in opposite directions must slow or stop to pass each other. In rural areas, these are often called country lanes. In urban areas, alleys are often only one lane wide. Urban and suburban one lane roads are often designated for one-way traffic.

Lane capacity varies widely due to conditions such as neighboring lanes, lane width, elements next to the road, number of driveways, presence of parking, speed limits, number of heavy vehicles and so on – the range can be as low as 1000 passenger cars / hour to as high as 4800 passenger cars /hour but mostly falls between 1500 and 2400 passenger cars / hour.[2]

The Ontario Highway 401 in the Greater Toronto area, with 17 travel lanes in 6 separate carriageways visible in the midground. Turning lane on the Rodovia BR-101 (Brazil) Play media Changing lanes, Gothenburg, Sweden Transfer lanes, connecting surface collector lanes with through lanes between two tunnels A left-turn merging lane in Germany, needing explanation by a crafted sign These usages lead to the phrases life in the slow lane and life in the fast lane, used to describe relaxed or busy lifestyles, respectively and used as the titles of various books and songs.

While in general, wider lanes are associated with a reduction in crashes,[7] in urban settings both narrow (less than 2.8 m) and wide (over 3.1~3.2 m) lanes increase crash risks.[8] Wider lanes (over 3.3~3.4m) are associated with 33% higher impact speeds, as well as higher crash rates. Carrying capacity is also maximal at a width of 3 to 3.1 metres (9.8 to 10.2 ft), both for motor traffic and for bicycles. Pedestrian volume declines as lanes widen, and intersections with narrower lanes provide the highest capacity for bicycles.[9] As lane width decreases, traffic speed diminishes.[10]

Advocates for safety of people walking and people on bikes, and many new urbanists disagree with traditional thinking in traffic engineering, saying that safety and capacity are not adversely impacted by reducing lanes widths to as little as 10 feet (3.0 m).[11] Moreover, wider travel lanes also increase exposure and crossing distance for pedestrians at intersections and midblock crossings.

assumed widths and heights in road design for Europe (in meters)

The widths of vehicle lanes typically vary from 9 to 15 feet (2.7 to 4.6 m). Lane widths are commonly narrower on low volume roads and wider on higher volume roads. The lane width depends on the assumed maximum vehicle width with an additional space to allow for lateral motion of the vehicle.

The maximum truck width had been 96 inches (2.438 m) in the Code of Federal Regulations of 1956 which matches with the width of eight-foot for shipping containers. This had been increased to 102 inches (2.591 m) in 1976 which explicitly states to be read as the slightly larger metric 2.6 metres (102.36 in) width respecting international harmonization.[12] The same applies to standards in Europe which had increased the allowable size of road vehicles with a current maximum of 2.55 metres (100.39 in) for most trucks and allowing 2.6 metres (102.36 in) for refrigerator trucks. The minimum extra space had been 0.20 metres (7.87 in) and it is currently assumed to be at least 0.25 metres (9.84 in) on each side. For roads with a lower amount of traffic it is allowed to build the second or third lane in the same direction to an assumed lower width for cars like 1.75 metres (68.90 in), however this is not recommended as a design principle for new roads as changes in the amount of traffic could make for unnecessarily increased risks in the future.

The Interstate Highway standards for the U.S. Interstate Highway System uses a 12-foot (3.7 m) standard for lane width, while narrower lanes are used on lower classification roads. In Europe, as laws and road width vary by country, the minimum widths of lanes is generally between 2.5 to 3.25 metres (8.2 to 10.7 ft).[13] The federal Bundesstraße interurban network in Germany defines a minimum of 3.5 metres (11 ft 6 in) for each lane for the smallest two lane roads with an additional 0.25 metres (9.84 in) on the outer sides and shoulders being at least 1.5 metres (59.06 in) on each side. A modern Autobahn divided highway will have two lanes per direction which are 3.75 metres (12 ft 4 in) wide with an additional clearance of 0.50 metres (19.69 in) on each side, while three lanes per direction are set at 3.75 metres (12 ft 4 in) for the rightmost lane and 3.5 metres (11 ft 6 in) for the other lanes. Urban access roads and roads in low-density areas may have lanes as small as 2.75 metres (9 ft 0 in) in width per lane with shoulders being at least 1 metre (3 ft 3 in) wide.[14]

Main article: Road surface marking A typical rural American freeway (Interstate 5 in the Central Valley of California). Notice the yellow line on the left, the dashed white line in the middle, and the solid white line on the right. Also note the rumble strip to the left of the yellow line.

Painted lane markings vary widely from country to country. In the United States, Canada, Mexico, Honduras, Puerto Rico, Virgin Islands and Norway, yellow lines separate traffic going opposite directions and white separates lanes of traffic traveling the same direction, but such is not the case in many European countries.

Lane markings are mostly lines painted on the road by a road marking machine, which can adjust the marking widths according to the lane type.[15]

Traffic reports in California often refer to accidents being "in the number X lane." The California Department of Transportation (Caltrans) assigns the numbers from left to right.[16] The far left passing lane is the number 1 lane. The number of the slow lane (closest to freeway onramps/offramps) depends on the total number of lanes, and could be anywhere from 2 to 8.

For much of human history, roads did not need lane markings because most people walked or rode horses at relatively slow speeds. Another reason for not using lane markings is that they are expensive to maintain.

When automobiles, trucks, and buses came into widespread use during the first two decades of the 20th century, head-on collisions became more common.

Without the guidance provided by lane markings, drivers in the early days often erred in favor of keeping closer to the middle of the road, rather than risk going off-road into ditches or trees[citation needed]. This practice often left inadequate room for opposing traffic.

The history of lane markings is connected to the mass automobile construction in Detroit. It resulted in the formation of the first Road Commission of Wayne County, Michigan in 1906 which was trying to make roads safer (Henry Ford served on the board in the first year).[17] The commission would order the construction of the first concrete road in 1909 (the Woodard Avenue in Detroit) and it conceived the centerline for highways in 1911. Hence the chairmen of the Road Commission, Edward N. Hines is widely credited as the inventor of line markings.[18]

The introduction as a common standard is connected to June McCarroll, a physician in Indio, California who started experimenting with painting lines on roads in 1917 after she was run off a highway by a truck driver. In November 1924, after years of lobbying by Dr. McCarroll and her allies, California officially adopted a policy of painting lines on its highways. A portion of Interstate 10 near Indio has been named the Dr. June McCarroll Memorial Freeway in her honor.

black center line on an Autobahn in Germany (late 1930s)

The first lane markings in Europe were painted at an accident hotspot in the small town of Sutton Coldfield near Birmingham, England in 1921. The success of this experiment made its way to other hotspots and later standardization of white paint for line markings in Great Britain.[19]

The first lane markings in Germany were used in Berlin in 1925 using white paint for line markings and road edge markings. When the standard for the new autobahn network was conceived in the 1930s it mandated the usage of black paint for the center line for each carriageway as black was better visible on the bright surface of the concrete roads.

By 1939, lane markings had become so popular that they were officially standardized throughout the United States. The concept of line markings spread throughout the world becoming standard for most roads. Originally the lines were drawn manually with normal paint which would bleach out quickly. After the war, the first machines for line markings were invented[20] and a plastic strip was becoming standard in the 1950s which led to gradually find line markings on all roads.

Main article: Right- and left-hand traffic

Toll road

Residential Paving Cost Estimate Sealcoating a road on the University of California, Davis campus in 2013.

Sealcoating, or pavement sealing, is the process of applying a protective coating to asphalt-based pavements to provide a layer of protection from the elements: water, oils, and U.V. damage.

Sealcoat or pavement sealer is a coating for asphalt-based pavements. Sealcoating is marketed as a protective coating that extends the life of asphalt pavements. There is not any independent research that proves these claims.

Sealcoating may also reduce the friction or anti-skid properties associated with the exposed aggregates in asphalt.

Not all pavement sealcoat are created equal. For example, refined tar-based sealer offers the best protecting against water penetration and chemical resistance. Asphalt-based sealer typically offers poor protection against environmental chemical and harsher climates (salt water). Petroleum-based sealer offer protection against water and chemicals somewhere between the other two sealers. Another difference between coatings is in terms of wear. Again, refined tar-based sealer offers the best wear characteristics (typically 3–5 years) while asphalt-based sealer may last 1–3 years. Petroleum-based sealer falls between refined tar and asphalt.

There are concerns about pavement sealer polluting the environment after it is abraded from the surface of the pavement. Some states in North America have banned the use of coal tar–based sealants primarily based on United States Geological Survey studies.[1] The industry group that represents sealcoat manufacturers has performed numerous research and reviews of the USGS and have found it to be erroneous, biased (citation and white hat, to name a few) and too generalized in order to draw the conclusions that the United States Geological Survey claims.

There are primarily three types of pavement sealers. They are commonly known as refined tar-based (coal tar based), asphalt-based, and petroleum-based. All three have their advantages but are typically chosen by the contractors’ preference unless otherwise specified.

Prior to application the surface must be completely clean and dry using sweeping methods and/or blowers. If the surface is not clean and dry, then poor adhesion will result. Pavement sealers are applied with either pressurized spray equipment, or self-propelled squeegee machines or by hand with a squeegee. Equipment must have continuous agitation to maintain consistency of the sealcoat mix. The process is typically a two-coat application which requires 24 to 48 hours of curing before vehicles can be allowed back on the surface. Once the surface is properly prepared, then properly mixed sealer will be applied at about 60 square feet per gallon per coat.

The Sealcoating Process

Some studies that suggest that refined tar sealants are a significant contributor to polycyclic aromatic hydrocarbon levels in streams and creek beds and that the continual application of sealcoats may be a significant factor. As a result, a few municipalities in the United States have banned this material.[2] The same studies also suggest that it can be harmful if ingested before curing and ingesting soil or dust contaminated by eroded coal tar sealant.[3] It is also known to have effects on fish and other animals that live in water.

Asphalt Surfacing Contractors Price

https://www.helpwikileaks.co.za/southgate/

Help Wiki Leaks Have Asphalt Services List

Commercial Paving Company East Rand

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Commercial Paving Company in East Rand except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Pave My Driveway Quotes

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Asphalt Installation Price

The primary use (70%) of asphalt Tucson Asphalt Companies is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Asphalt

Paving Services Price

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Commercial Paving Company Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Pave My Driveway Quotes

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Asphalt And Paving Companies the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Pave My Driveway Price

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Diverging diamond interchange

Asphalt Driveway Near Me

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Tarmac Driveways Near Me

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Paving Contractors Costs

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Paving Companies Near Me

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Contractors Near Me

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Asphalt Driveway Paving Price

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Alley

Residential Paving Companies Quotes

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

The Paving Company Near Me

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Asphalt Contractors Near Me

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Residential Paving Cost Estimate

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Asphalt Driveway Paving Price

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Pave My Driveway Quotes

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Asphalt Contractors Price

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Asphalt Paving Cost Estimate

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Michigan left

Paving Specialists Price

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Driveway Paving Cost Estimate

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Paving Companies Quotes

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Lane

Asphalt Driveway Repair Quotes

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Commercial Paving Company in East Rand ?

Asphalt Paving Companies Price An alley in Fira, Santorini, Greece Sana'a, Yemen Howey Place, Melbourne, Australia Hagay Street, Old City, Jerusalem Rua Sobre-o-Douro, Porto, Portugal Peg Washington's Lane, Graiguenamanagh, County Kilkenny, Ireland

An alley or alleyway is a narrow lane, path, or passageway, often reserved for pedestrians, which usually runs between, behind, or within buildings in the older parts of towns and cities. It is also a rear access or service road (back lane), or a path or walk in a park or garden.[1]

A covered alley or passageway, often with shops, may be called an arcade. The origin of the word alley is late Middle English, from Old French: alee "walking or passage", from aler "go", from Latin: ambulare "to walk".[2]

The word alley is used in two main ways:

Grand Bazaar, Istanbul

In older cities and towns in Europe, alleys are often what is left of a medieval street network, or a right of way or ancient footpath. Similar paths also exist in some older North American towns and cities. In some older urban development in North America lanes at the rear of houses, to allow for deliveries and garbage collection, are called alleys. Alleys and ginnels were also the product of the 1875 Public Health Act in the United Kingdom, where usually alleys run along the back of streets of terraced houses, with ginnels connecting them to the street every fifth house.[citation needed] Alleys may be paved, or unpaved, and a blind alley is a cul-de-sac. Modern urban developments may also provide a service road to allow for waste collection, or rear access for fire engines and parking.

Because of geography, steps (stairs) are the predominant form of alley in hilly cities and towns. This includes Pittsburgh (see Steps of Pittsburgh), Cincinnati (see Steps of Cincinnati), Minneapolis, Seattle,[3] and San Francisco[4] in the United States, as well as Hong Kong,[5] Genoa and Rome.[6]

Some alleys are roofed because they are within buildings, such as the traboules of Lyon, or when they are a pedestrian passage through railway embankments in Britain. The latter follow the line of rights-of way that existed before the railway was built.

Arcades are another kind of covered passageway and the simplest kind are no more than alleys to which a glass roof was added later, like, for example, Howey Place, Melbourne, Australia (see also Block Place, Melbourne). However, most arcades differ from alleys in that they are architectural structures built with a commercial purpose and are a form of shopping mall. All the same alleys have for long been associated with various types of businesses, especially pubs and coffee houses. Bazaars and Souqs are an early form of arcade found in Asia and North Africa.

Some attractive historic alleys are found in older American and Canadian cities, like New York City, Philadelphia, Charleston, South Carolina, Boston, Annapolis, New Castle, Delaware, Quebec City, St John's, Newfoundland,[7] and Victoria, British Columbia.

View into Fan Tan Alley, Victoria, British Columbia, Canada

Québec City was originally built on the riverside bluff Cap Diamant in the 17th century, and throughout Quebec City there are strategically placed public stairways that link the bluff to the lower parts of the city.[8] The Upper City is the site of Old Québec’s most significant historical sites, including 17th- and 18th-century chapels, the Citadel and the city ramparts.

Fan Tan Alley is an alley in Victoria, British Columbia's Chinatown. It was originally a gambling district with restaurants, shops, and opium dens. Today it is a tourist destination with many small shops including a barber shop, art gallery, Chinese cafe and apartments. It may well be the narrowest street in Canada. At its narrowest point it is only 0.9 metres (35 in) wide.[9] Waddington Alley is another interesting alley in Victoria and the only street in that city still paved with wood blocks, an early pavement common in the downtown core. Other heritage features are buildings more than a century old lining the alley and a rare metal carriage curb that edges the sidewalk on the southern end.[10]

Looking south down Shubert Alley in Manhattan's Theater District

In the United States alleys exist in both older commercial and residential areas, for both service purposes and automobile access. In residential areas, particularly in those that were built before 1950, alleys provide rear access to property where a garage was located, or where waste could be collected by service vehicles. A benefit of this was the location of these activities to the rear, less public side of a dwelling. Such alleys are generally roughly paved, but some may be dirt. Beginning in the late 20th century, they were seldom included in plans for new housing developments.

When Annapolis, Maryland, was established as a city at the beginning of the 18th century,[11] the streets were established in circles. That encouraged the creation of shortcuts, which over time became paved alleys. Some ten of these survive, and the city has recently worked on making them more attractive.[12]

Several residential neighborhoods in Austin, Texas, have comprehensive alley systems. These include Hyde Park, Rosedale, and areas northwest of the Austin State Hospital.

In the Beacon Hill district of Boston, Massachusetts, Acorn Street, a narrow cobbled lane with row houses, is one of Boston's more attractive and historic alleys. Another early settled American city, New Castle, Delaware has a number of interesting alleys, some of which are footpaths and others narrow, sometimes cobbled, lanes open to traffic. Many of the alleys in the Back Bay and South End area are numbered (e.g. "Public Alley 438").

In the French Quarter of Charleston’s historic district, Philadelphia Alley (c. 1766), originally named "Cow Alley", is one of several picturesque alleys. In 1810 William Johnson gave it the name of "Philadelphia Alley", although locals call the "elegantly landscaped thoroughfare" "Dueler’s Alley".[13] Starting on East Bay Street, Stolls Alley is just seventeen bricks wide at its start, and named for Justinus Stoll, an 18th-century blacksmith.[14] For three hundred years, another of Charleston's narrow lanes, Lodge Alley, served a commercial purpose. Originally French Hugenot merchants built homes on it, along with warehouses to store supplies their ships. Just ten-foot-wide this alley was a useful means of access to Charleston’s waterways.[15] Today it leads to East Bay Street's many restaurants.

Main article: Steps of Cincinnati

Cincinnati is a city of hills.[16] Before the advent of the automobile a system of stairway alleys provided pedestrians important and convenient access to and from their hill top homes. At the height of their use in the 19th century, over 30 miles (48 km) of hill side steps once connected the neighborhoods of Cincinnati to each other.[17] The first steps were installed by residents of Mount Auburn in the 1830s in order to gain easier access to Findlay Market in Over-the-Rhine.[18] In recent years many steps have fallen into disrepair but there is a movement now to rehabilitate them.[19]

Broadway Alley is a rare alley in Manhattan; it is not located near Broadway, East Broadway or West Broadway

New York City's Manhattan is unusual in that it has very few alleys, since the Commissioner's Plan of 1811 did not include rear service alleys when it created Manhattan's grid. The exclusion of alleys has been criticized as a flaw in the plan, since services such as garbage pickup cannot be provided out of sight of the public, although other commentators feel that the lack of alleys is a benefit to the quality of life of the city.[20]

Two notable alleys in the Greenwich Village neighborhood in Manhattan are MacDougal Alley and Washington Mews.[21] The latter is a blind alley or cul-de-sac. Greenwich Village also has a number of private alleys that lead to back houses, which can only be accessed by residents, including Grove Court,[22] Patchin Place and Milligan Place, blind alleys. Patchin Place is notable for the writers who lived there.[23]

Shubert Alley is a 300-foot (91 m) long pedestrian alley at the heart of the Broadway theater district of New York City. The alley was originally created as a fire exit between the Shubert Theatre on West 45th Street and the Booth Theatre on West 44th Street, and the Astor Hotel to their east. Actors once gathered in the alley, hoping to attract the attention of the Shubert Brothers and get employment in their theatrical productions.[24] When the hotel was torn down, and replaced with One Astor Plaza (1515 Broadway), the apparent width of the alley increased, as the new building did not go all the way to the westernmost edge of the building lot. However, official, Shubert Alley consists only of the space between the two theatres and the lot line.

In the Brooklyn Heights neighborhood of Brooklyn, Grace Court Alley is another converted mews,[25] as is Dennett Place in the Carroll Gardens neighborhood.[26] The former is a cul-de-sac.

Pedestrians walking along Elfreth's Alley, Philadelphia

The Old City and Society Hill neighborhoods of Philadelphia, the oldest parts of the city, include a number of alleys, notably Elfreth's Alley, which is called "Our nation's oldest residential street", dating from 1702.[27] As of 2012[update], there were 32 houses on the street, which were built between 1728 and 1836.[28]

There are numerous cobblestoned residential passages in Philadelphia, many no wider than a truck, and typically flanked with brick houses. A typical house on these alleys or lanes is called a Philadelphia "Trinity", named because it has three rooms, one to each floor, alluding to the Christian Trinity.[29] These alleys include Willings Alley, between S. 3rd and S. 4th Streets and Walnut and Spruce Streets.[30] Other streets in Philadelphia which fit the general description of an alley, but are not named "alley", include Cuthbert Street, Filbert Street, Phillips Street,[31] South American Street,[32] Sansom Walk,[33] St. James Place,[34] and numerous others.

Steps, Pittsburgh's equivalent for an alley, have defined it for many visitors. Writing in 1937, war correspondent Ernie Pyle wrote of the steps of Pittsburgh:

And then the steps. Oh Lord, the steps! I was told they actually had a Department of Steps. That isn’t exactly true, although they do have an Inspector of Steps. But there are nearly 15 miles (24 km) of city-owned steps, going up mountainsides.[35]

The City of Pittsburgh maintains 712 sets of city-owned steps, some of which are shown as streets on maps.[36]

In hilly San Francisco, California alleys often take the form of steps and it has several hundred public stairways.[37] Among the most famous is the stairway known as the Filbert steps, a continuation of Filbert Street.[38] The Filbert Street Steps descend the east slope of Telegraph Hill along the line where Filbert Street would be if the hill was not so steep. The stairway is bordered by greenery, that consists both backyards, and a border garden tended to and paid for by the residents of the "street", and runs down to an eastern stub of Filbert Street and the walkway through the plaza to The Embarcadero. Many houses in this residential neighborhood are accessible only from the steps.

Also in San Francisco, Belden Place is a narrow pedestrian alley, bordered by restaurants, in the Financial District, referred to as San Francisco's French Quarter for its historic ties to early French immigrants, and its popular contemporary French restaurants and institutions.[39] The area was home to San Francisco's first French settlers. Approximately 3,000, sponsored by the French government, arrived near the end of the Gold Rush in 1851.[40]

Alley in Sausalito, California

Seattle is a city of hills, bluffs, and canyons and many stairs. There are over 600 publicly accessible Seattle stairways within the city limits.[41]

Ruelle verte (Green alley) Montréal, Québec, Canada.

Numerous cities in the United States and Canada, such as Chicago,[42] Seattle,[43] Los Angeles,[44] Phoenix, Washington, D.C.,[45] and Montréal, have started reclaiming their alleys from garbage and crime by greening the service lanes, or back ways, that run behind some houses.[45][46] Chicago, Illinois has about 1,900 miles (3,100 km) of alleyways.[42] In 2007, the Chicago Department of Transportation started converting conventional alleys which were paved with asphalt into so called Green Alleys. This program, called the Green Alley Program, is supposed to enable easier water runoff, as the alleyways in Chicago are not connected directly to the sewer system. With this program, the water will be able to seep through semi-permeable concrete or asphalt in which a colony of fungi and bacteria will establish itself. The bacteria will help breakup oils before the water is absorbed into the ground. The lighter color of the pavement will also reflect more light, making the area next to the alley cooler.[47] The greening of such alleys or laneways can also involve the planting of native plants to further absorb rain water and moderate temperature.

New life has also come to other alleys within downtown commercial districts of various cities throughout the world with the opening of businesses, such as coffee houses, shops, restaurants and bars.

Another way that alleys and laneways are being revitalized is through laneway housing. A laneway house is a form of housing that has been proposed on the west coast of Canada, especially in the Metro Vancouver area. These homes are typically built into pre-existing lots, usually in the backyard and opening onto the back lane. This form of housing already exists in Vancouver, and revised regulations now encourage new developments as part of a plan to increase urban density in pre-existing neighbourhoods while retaining a single-family feel to the area.[48] Vancouver's average laneway house is one and a half stories, with one or two bedrooms. Typical regulations require that the laneway home is built on the back half of a traditional lot in the space normally reserved for a garage.[49][50]

Toronto also has a tradition of laneway housing and changed regulations to encourage new development.[51] However this was discontinued in 2006 after staff reviewed the impact on services and safety.[52]

London has numerous historical alleys, especially, but not exclusively, in its centre; this includes The City, Covent Garden, Holborn, Clerkenwell, Westminster and Bloomsbury amongst others.

An alley in London can also be called a passage, court, place, lane, and less commonly path, arcade, walk, steps, yard, terrace, and close.[53] While both a court and close are usually defined as blind alleys, or cul-de-sacs, several in London are throughways, for example Cavendish Court, a narrow passage leading from Houndsditch into Devonshire Square, and Angel Court, which links King Street and Pall Mall.[54] Bartholomew Close is a narrow winding lane which can be called an alley by virtue of its narrowness, and because through-access requires the use of passages and courts between Little Britain, and Long Lane and Aldersgate Street.[55]

In an old neighbourhood of the City of London, Exchange Alley or Change Alley is a narrow alleyway connecting shops and coffeehouses.[56] It served as a convenient shortcut from the Royal Exchange on Cornhill to the Post Office on Lombard Street and remains as one of a number of alleys linking the two streets. The coffeehouses[57] of Exchange Alley, especially Jonathan's and Garraway's, became an early venue for the lively trading of shares and commodities. These activities were the progenitor of the modern London Stock Exchange.

Boundary Passage, Shoreditch, London, England

Lombard Street and Change Alley had been the open-air meeting place of London's mercantile community before Thomas Gresham founded the Royal Exchange in 1565.[58] In 1698, John Castaing began publishing the prices of stocks and commodities in Jonathan's Coffeehouse, providing the first evidence of systematic exchange of securities in London.

Change Alley was the site of some noteworthy events in England's financial history, including the South Sea Bubble from 1711 to 1720 and the panic of 1745.[59]

In 1761 a club of 150 brokers and jobbers was formed to trade stocks. The club built its own building in nearby Sweeting's Alley in 1773, dubbed the "New Jonathan's", later renamed the Stock Exchange.[60]

West of the City there are a number of alleys just north of Trafalgar Square, including Brydges Place which is situated right next to the Coliseum Theatre and just 15 inches wide at its narrowest point, only one person can walk down it at a time. It is the narrowest alley in London and runs for 200 yards (180 m), connecting St Martin's Lane with Bedfordbury in Covent Garden.[61]

Close by is another very narrow passage, Lazenby Court, which runs from Rose Street to Floral Street down the side of the Lamb and Flag pub; in order to pass people must turn slightly sideways. The Lamb & Flag in Rose Street has a reputation as the oldest pub in the area,[62] though records are not clear. The first mention of a pub on the site is 1772.[63] The Lazenby Court was the scene of an attack on the famous poet and playwright John Dryden in 1679 by thugs hired by John Wilmot, 2nd Earl of Rochester,[64] with whom he had a long-standing conflict.[65]

In the same neighbourhood Cecil Court has an entirely different character than the two previous alleys, and is a spacious pedestrian street with Victorian shop-frontages that links Charing Cross Road with St. Martin's Lane, and it is sometimes used as a location by film companies.[66][67]

One of the older thoroughfares in Covent Garden, Cecil Court dates back to the end of the 17th century. A tradesman's route at its inception, it later acquired the nickname Flicker Alley because of the concentration of early film companies in the Court.[68] The first film-related company arrived in Cecil Court in 1897, a year after the first demonstration of moving pictures in the United Kingdom and a decade before London’s first purpose built cinema opened its doors. Since the 1930s it has been known as the new Booksellers' Row as it is home to nearly twenty antiquarian and second-hand independent bookshops.

It was the temporary home of an eight-year-old Wolfgang Amadeus Mozart while he was touring Europe in 1764. For almost four months the Mozart family lodged with barber John Couzin.[69] According to some modern authorities, Mozart composed his first symphony while a resident of Cecil Court.[70]

North of the centre of London, Camden Passage is a pedestrian passage off Upper Street in the London Borough of Islington, famous because of its many antiques shops, and an antique market on Wednesdays and Saturday mornings. It was built, as an alley, along the backs of houses on Upper Street, then Islington High Street, in 1767.[71]

An alley (usually called a ginnel) in Moss Side, Manchester Tolbooth Wynd, Edinburgh

In Scotland and Northern Ireland the Scots terms close, wynd, pend and vennel are general in most towns and cities. The term close has an unvoiced "s" as in sad. The Scottish author Ian Rankin's novel Fleshmarket Close was retitled Fleshmarket Alley for the American market. Close is the generic Scots term for alleyways, although they may be individually named closes, entries, courts and wynds. A close was private property, hence gated and closed to the public.

A wynd is typically a narrow lane between houses, an open throughway, usually wide enough for a horse and cart. The word derives from Old Norse venda, implying a turning off a main street, without implying that it is curved.[87] In fact, most wynds are straight. In many places wynds link streets at different heights and thus are mostly thought of as being ways up or down hills.

A pend is a passageway that passes through a building, often from a street through to a courtyard, and typically designed for vehicular rather than exclusively pedestrian access.[88] A pend is distinct from a vennel or a close, as it has rooms directly above it, whereas vennels and closes are not covered over.

A vennel is a passageway between the gables of two buildings which can in effect be a minor street in Scotland and the north east of England, particularly in the old centre of Durham. In Scotland, the term originated in royal burghs created in the twelfth century, the word deriving from the Old French word venelle meaning "alley" or "lane". Unlike a tenement entry to private property, known as a "close", a vennel was a public way leading from a typical high street to the open ground beyond the burgage plots.[89] The Latin form is venella.

Traboule, Vieux Lyon, France

The traboules of Lyon are passageways that cut through a house or, in some cases, a whole city block, linking one street with another. They are distinct from most other alleys in that they are mainly enclosed within buildings and may include staircases. While they are found in other French cities including Villefranche-sur-Saône, Mâcon, Chambéry, Saint-Étienne, Louhans, Chalon sur Saône and Vienne (Isère), Lyon has many more; in all there are about 500. The word traboule comes from the Latin trans ambulare, meaning "to cross", and the first of them were possibly built as early as the 4th century. As the Roman Empire disintegrated, the residents of early Lyon—Lugdunum, the capital of Roman Gaul—were forced to move from the Fourvière hill to the banks of the river Saône when their aqueducts began to fail. The traboules grew up alongside their new homes, linking the streets that run parallel to the river Saône and going down to the river itself. For centuries they were used by people to fetch water from the river and then by craftsmen and traders to transport their goods. By the 18th century they were invaluable to what had become the city’s defining industry, textiles, especially silk.[97] Nowadays, traboules are tourist attractions, and many are free and open to the public. Most traboules are on private property, serving as entrances to local apartments.

Venice is largely a traffic free city and there is, in addition to the canals, a maze of around 3000 lanes and alleys called calli (which means narrow). Smaller ones are callètte or callesèlle, while larger ones are calli large. Their width varies from just over 50 centimetres (19.7 in) to 5–6 metres (196.9–236.2 in). The narrowest is Calletta Varisco, which just 53 centimetres (20.9 in); Calle Stretta is 65 centimetres (25.6 in) wide and Calle Ca’ Zusto 68 centimetres (26.8 in). The main ones are also called salizada and wider calli, where trade proliferates, are called riga', while blind calli, used only by residents to reach their homes, are ramo.[98]

Spreuerhofstraße is the world's narrowest street, found in the city of Reutlingen, Baden-Württemberg, Germany.[99] It ranges from 31 centimetres (12.2 in) at its narrowest to 50 centimetres (19.7 in) at its widest.[100] The lane was built in 1727 during the reconstruction efforts after the area was completely destroyed in the massive citywide fire of 1726 and is officially listed in the Land-Registry Office as City Street Number 77.[99][101]

Lintgasse is an alley (German: Gasse) in the Old town of Cologne, Germany between the two squares of Alter Markt and Fischmarkt. It is a pedestrian zone and though only some 130 metres long, is nevertheless famous for its medieval history. The Lintgasse was first mentioned in the 12th century as in Lintgazzin, which may be derived from basketmakers who wove fish baskets out of Linden tree barks. These craftsmen were called Lindslizer, meaning Linden splitter. During the Middle Ages, the area was also known as platēa subri or platēa suberis, meaning street of Quercus suber, the cork oak tree. Lintgasse 8 to 14 used to be homes of medieval knights as still can be seen by signs like Zum Huynen, Zum Ritter or Zum Gir. During the 19th-century the Lintgasse was called Stink-Linkgaß, a because of its poor air quality.[102]

A view of Spreuerhofstraße in Germany, showing the sign indicating that is the world's record narrowest street

Gränd is Swedish for an alley and there are numerous gränder, or alleys in Gamla stan, The Old Town, of Stockholm, Sweden. The town dates back to the 13th century, with medieval alleyways, cobbled streets, and historic buildings. North German architecture has had a strong influence in the Old Town's buildings. Some of Stockholm's alleys are very narrow pedestrian footpaths, while others are very narrow, cobbled streets, or lanes open to slow moving traffic. Mårten Trotzigs gränd ("Alley of Mårten Trotzig") runs from Västerlånggatan and Järntorget up to Prästgatan and Tyska Stallplan, and part of it consists of 36 steps. At its narrowest the alley is a mere 90 cm (35 inches) wide, making it the narrowest street in Stockholm.[103] The alley is named after the merchant and burgher Mårten Trotzig (1559–1617), who, born in Wittenberg,[103] emigrated to Stockholm in 1581, and bought properties in the alley in 1597 and 1599, also opening a shop there. According to sources from the late 16th century, he was dealing in first iron and later copper, by 1595 had sworn his burgher oath, and was later to become one of the richest merchants in Stockholm.[104]

Mårten Trotzigs Gränd, 90 cm wide, the narrowest alley in Gamla stan, Stockholm, Sweden

Possibly referred to as Trångsund ("Narrow strait") before Mårten Trotzig gave his name to the alley, it is mentioned in 1544 as Tronge trappe grenden ("Narrow Alley Stairs"). In 1608 it is referred to Trappegrenden ("The Stairs Alley"), but a map dated 1733 calls it Trotz gränd. Closed off in the mid 19th century, not to be reopened until 1945, its present name was officially sanctioned by the city in 1949.[104]

The "List of streets and squares in Gamla stan" provides links to many pages that describe other alleys in the oldest part of Stockholm; e.g. Kolmätargränd (Coal Meter's Alley); Skeppar Karls Gränd (Skipper Karl's Alley); Skeppar Olofs Gränd (Skipper Olof's Alley); and Helga Lekamens Gränd (Alley of the Holy Body).

A hutong in Beijing

Hutongs (simplified Chinese: 胡同; traditional Chinese: 衚衕; pinyin: hútòng; Wade–Giles: hu-t'ung) are a type of narrow streets or alleys, commonly associated with northern Chinese cities, most prominently Beijing.

In Beijing, hutongs are alleys formed by lines of siheyuan, traditional courtyard residences.[105] Many neighbourhoods were formed by joining one siheyuan to another to form a hutong, and then joining one hutong to another. The word hutong is also used to refer to such neighbourhoods. During China’s dynastic period, emperors planned the city of Beijing and arranged the residential areas according to the social classes of the Zhou Dynasty (1027 – 256 BC). The term "hutong" appeared first during the Yuan Dynasty, and is a term of Mongolian origin meaning "town".[106]

At the turn of the 20th century, the Qing court was disintegrating as China’s dynastic era came to an end. The traditional arrangement of hutongs was also affected. Many new hutongs, built haphazardly and with no apparent plan, began to appear on the outskirts of the old city, while the old ones lost their former neat appearance.

Following the founding of the People’s Republic of China in 1949, many of the old hutongs of Beijing disappeared, replaced by wide boulevards and high rises. Many residents left the lanes where their families lived for generations for apartment buildings with modern amenities. In Xicheng District, for example, nearly 200 hutongs out of the 820 it held in 1949 have disappeared. However, many of Beijing’s ancient hutongs still stand, and a number of them have been designated protected areas. Many hutongs, some several hundred years old, in the vicinity of the Bell Tower and Drum Tower and Shichahai Lake are preserved amongst recreated contemporary two- and three-storey versions.[107][108]

A longtang in Shangxian Fang, a residential compound in Shanghai, China.

Hutongs represent an important cultural element of the city of Beijing and the hutongs are residential neighborhoods which still form the heart of Old Beijing. While most Beijing hutongs are straight, Jiudaowan (九道弯, literally "Nine Turns") Hutong turns nineteen times. At its narrowest section, Qianshi Hutong near Qianmen (Front Gate) is only 40 centimeters (16 inches) wide.[109]

The Shanghai longtang is loosely equivalent to the hutong of Beijing. A longtang (弄堂 lòngtáng, Shanghainese: longdang) is a laneway in Shanghai and, by extension, a community centred on a laneway or several interconnected laneways. On its own long (traditional Chinese 衖 or 弄, simplified Chinese 弄) is a Chinese term for "alley" or "lane", which is often left untranslated in Chinese addresses, but may also be translated as "lane", and "tang" is a parlor or hallway.[110] It is sometimes called lilong (里弄); the latter name incorporates the -li suffix often used in the name of residential developments in the late 19th and early 20th centuries. As with the term hutong, the Shanghai longdang can either refers to the lanes that the houses face onto, or a group of houses connected by the lane.[111][112][113][114]

A Golden Gai alley, Tokyo, Japan.

Shinjuku Golden Gai (新宿ゴールデン街) is a small area of Shinjuku, Tokyo, Japan,[115] famous both as an area of architectural interest and for its nightlife. It is composed of a network of six narrow alleys, connected by even narrower passageways which are just about wide enough for a single person to pass through. Over 200 tiny shanty-style bars, clubs and eateries are squeezed into this area.[116]

Its architectural importance is that it provides a view into the relatively recent past of Tokyo, when large parts of the city resembled present-day Golden Gai, particularly in terms of the extremely narrow lanes and the tiny two-storey buildings. Nowadays, most of the surrounding area has been redeveloped. Typically, the buildings are just a few feet wide and are built so close to the ones next door that they nearly touch. Most are two-storey, having a small bar at street level and either another bar or a tiny flat upstairs, reached by a steep set of stairs. None of the bars are very large; some are so small that they can only fit five or so customers at one time.[115] The buildings are generally ramshackle, and the alleys are dimly lit, giving the area a very scruffy and run-down appearance. However, Golden Gai is not a cheap place to drink, and the clientele that it attracts is generally well off.

Golden Gai is well known as a meeting place for musicians, artists, directors, writers, academics and actors, including many celebrities. Many of the bars only welcome regular customers, who initially should be introduced by an existing patron, although many others welcome non-regulars, some even making efforts to attract overseas tourists by displaying signs and price lists in English.[115]

Golden Gai was known for prostitution before 1958, when prostitution became illegal. Since then it has developed as a drinking area, and at least some of the bars can trace their origins back to the 1960s.[116]

A medina quarter (Arabic: المدينة القديمةal-madīnah al-qadīmah "the old city") is a distinct city section found in many North African cities. The medina is typically walled, contains many narrow and maze-like streets.[117] The word "medina" (Arabic: مدينةmadīnah) itself simply means "city" or "town" in modern Arabic.

Because of the very narrow streets, medinas are generally free from car traffic, and in some cases even motorcycle and bicycle traffic. The streets can be less than a metre wide. This makes them unique among highly populated urban centres. The Medina of Fes, Morocco or Fes el Bali, is considered one of the largest car-free urban areas in the world.[118]

Notes

Bibliography


Boulevard

Asphalt Driveway Near Me Macadam country road[dubious – discuss]

Macadam is a type of road construction, pioneered by Scottish engineer John Loudon McAdam around 1820, in which single-sized crushed stone layers of small angular stones are placed in shallow lifts and compacted thoroughly. A binding layer of stone dust (crushed stone from the original material) may form; it may also, after rolling, be covered with a binder to keep dust and stones together. The method simplified what had been considered state of the art at that point.

Pierre-Marie-Jérôme Trésaguet is sometimes considered the first person to bring post-Roman science to road building. A Frenchman from an engineering family, he worked paving roads in Paris from 1757 to 1764. As chief engineer of road construction of Limoges, he had opportunity to develop a better and cheaper method of road construction. In 1775, Tresaguet became engineer-general and presented his answer for road improvement in France, which soon became standard practice there.[1]

Trésaguet had recommended a roadway consisting of three layers of stones laid on a crowned subgrade with side ditches for drainage. The first two layers consisted of angular hand-broken aggregate, maximum size 3 inches (7.6 cm), to a depth of about 8 inches (20 cm). The third layer was about 2 inches (5 cm) thick with a maximum aggregate size of 1 inch (2.5 cm).[2] This top level surface permitted a smoother shape and protected the larger stones in the road structure from iron wheels and horse hooves. To keep the running surface level with the countryside, this road was put in a trench, which created drainage problems. These problems were addressed by changes that included digging deep side ditches, making the surface as solid as possible, and constructing the road with a difference in elevation (height) between the two edges, that difference being referred to interchangeably as the road's camber or cross slope.[2]

Laying Telford paving in Aspinwall, Pennsylvania, 1908

Thomas Telford, born in Dumfriesshire Scotland,[3] was a surveyor and engineer who applied Tresaguet's road building theories. In 1801 Telford worked for the British Commission of Highlands Roads and Bridges. He became director of the Holyhead Road Commission between 1815 and 1830. Telford extended Tresaguet's theories, but emphasized high-quality stone. He recognized that some of the road problems of the French could be avoided by using cubical stone blocks.[4]

Telford used roughly 12 in × 10 in × 6 in (30 cm × 25 cm × 15 cm) partially shaped paving stones (pitchers), with a slight flat face on the bottom surface. He turned the other faces more vertically than Tresaguet's method. The longest edge was arranged crossways to the traffic direction, and the joints were broken in the method of conventional brickwork, but with the smallest faces of the pitcher forming the upper and lower surfaces.[4]

Broken stone was wedged into the spaces between the tapered perpendicular faces to provide the layer with good lateral control. Telford kept the natural formation level and used masons to camber the upper surface of the blocks. He placed a 6-inch (15 cm) layer of stone no bigger than 6 cm (2.4 in) on top of the rock foundation. To finish the road surface he covered the stones with a mixture of gravel and broken stone. This structure came to be known as "Telford pitching." Telford's road depended on a resistant structure to prevent water from collecting and corroding the strength of the pavement. Telford raised the pavement structure above ground level whenever possible.

Where the structure could not be raised, Telford drained the area surrounding the roadside. Previous road builders in Britain ignored drainage problems and Telford's rediscovery of these principles was a major contribution to road construction.[5] Though notably of around the same time, John Metcalf was a strong advocate that drainage was in fact an important factor to road construction, and astonished colleagues by building dry roads through marshland. He accomplished this by installing a layer of brushwood and heather.

John Loudon McAdam (1756–1836)[6]

John Loudon McAdam was born in Ayr, Scotland, in 1756. In 1787, he became a trustee of the Ayrshire Turnpike in the Scottish Lowlands and during the next seven years this hobby became an obsession. He moved to Bristol, England, in 1802 and became a Commissioner for Paving in 1806.[7] On 15 January 1816, he was elected Surveyor-General of roads for the Turnpike Trust and was now responsible for 149 miles of road.[7] He then put his ideas about road construction into practice, the first 'macadamised' stretch of road being Marsh Road at Ashton Gate, Bristol.[7] He also began to actively propagate his ideas in two booklets called Remarks (or Observations) on the Present System of Roadmaking, (which ran nine editions between 1816 and 1827) and A Practical Essay on the Scientific Repair and Preservation of Public Roads, published in 1819.[8]

Photograph of macadam road, ca 1850s, Nicolaus, California

McAdam's method was simpler, yet more effective at protecting roadways: he discovered that massive foundations of rock upon rock were unnecessary, and asserted that native soil alone would support the road and traffic upon it, as long as it was covered by a road crust that would protect the soil underneath from water and wear.[9]

Unlike Telford and other road builders of the time, McAdam laid his roads as level as possible. His 30-foot-wide (9.1 m) road required only a rise of 3 inches (7.6 cm) from the edges to the centre. Cambering and elevation of the road above the water table enabled rain water to run off into ditches on either side.[10]

Size of stones was central to the McAdam's road building theory. The lower 20-centimetre (7.9 in) road thickness was restricted to stones no larger than 7.5 centimetres (3.0 in). The upper 5-centimetre (2.0 in) layer of stones was limited to 2 centimetres (0.79 in) size and stones were checked by supervisors who carried scales. A workman could check the stone size himself by seeing if the stone would fit into his mouth. The importance of the 2 cm stone size was that the stones needed to be much smaller than the 10 cm width of the iron carriage tyres that travelled on the road.[5]

McAdam believed that the "proper method" of breaking stones for utility and rapidity was accomplished by people sitting down and using small hammers, breaking the stones so that none of them was larger than six ounces in weight. He also wrote that the quality of the road would depend on how carefully the stones were spread on the surface over a sizeable space, one shovelful at a time.[11]

McAdam directed that no substance that would absorb water and affect the road by frost should be incorporated into the road. Neither was anything to be laid on the clean stone to bind the road. The action of the road traffic would cause the broken stone to combine with its own angles, merging into a level, solid surface that would withstand weather or traffic.[12]

Through his road-building experience, McAdam had learned that a layer of broken angular stones would act as a solid mass and would not require the large stone layer previously used to build roads. Keeping the surface stones smaller than the tyre width made a good running surface for traffic. The small surface stones also provided low stress on the road, so long as it could be kept reasonably dry.[13]

Construction of the first macadamized road in the United States (1823). In the foreground, workers are breaking stones "so as not to exceed 6 ounces [170 g] in weight or to pass a two-inch [5 cm] ring".[14][15][16]

The first macadam road built in the United States was constructed between Hagerstown and Boonsboro, Maryland and was named at the time Boonsborough Turnpike Road. This was the last section of unimproved road between Baltimore on the Chesapeake Bay to Wheeling on the Ohio River. Stagecoaches traveling the Hagerstown to Boonsboro road in the winter took 5 to 7 hours to cover the 10-mile (16 km) stretch.[15][16] This road was completed in 1823, using McAdam's road techniques, except that the finished road was compacted with a cast-iron roller instead of relying on road traffic for compaction.[17][15][16] The second American road built using McAdam principles was the Cumberland Road which was 73 miles (117 km) long and was completed in 1830 after five years of work.[15][16]

McAdam's renown is due to his effective and economical construction, which was a great improvement over the methods used by his generation. He emphasized that roads could be constructed for any kind of traffic, and he helped to alleviate the resentment travelers felt toward increasing traffic on the roads. His legacy lies in his advocacy of effective road maintenance and management. He advocated a central road authority and the trained professional official, who could be paid a salary that would keep him from corruption. This professional could give his entire time to his duties and be held responsible for his actions.[18]

McAdam's road building technology was applied to roads by other engineers. One of these engineers was Richard Edgeworth, who filled the gaps between the surface stones with a mixture of stone dust and water, providing a smoother surface for the increased traffic using the roads.[19] This basic method of construction is sometimes known as water-bound macadam. Although this method required a great deal of manual labour, it resulted in a strong and free-draining pavement. Roads constructed in this manner were described as "macadamized."[19]

New macadam road construction at McRoberts, Kentucky: pouring tar. 1926

With the advent of motor vehicles, dust became a serious problem on macadam roads. The area of low air pressure created under fast-moving vehicles sucked dust from the road surface, creating dust clouds and a gradual unraveling of the road material.[20] This problem was approached by spraying tar on the surface to create tar-bound macadam. On March 13, 1902 in Monaco, a Swiss doctor, Ernest Guglielminetti, came upon the idea of using tar from Monaco's gasworks for binding the dust.[21] Later a mixture of coal tar and ironworks slag, patented by Edgar Purnell Hooley as tarmac, was introduced.

A more durable road surface (modern mixed asphalt pavement) sometimes referred to in the US as blacktop, was introduced in the 1920s. This pavement method mixed the aggregates into the asphalt with the binding material before they were laid. The macadam surface method laid the stone and sand aggregates on the road and then sprayed it with the binding material.[22] While macadam roads have now been resurfaced in most developed countries, some are preserved along stretches of roads such as the United States' National Road.[citation needed]

Because of the historic use of macadam as a road surface, roads in some parts of the United States (as parts of Pennsylvania) are often referred to as macadam, even though they might be made of asphalt or concrete. Similarly, the term "tarmac" is sometimes colloquially misapplied to asphalt roads or aircraft runways.[23]

Asphalt Contractors Price

https://www.helpwikileaks.co.za/southgate/

Help Wiki Leaks Have Asphalt Services List

Commercial Paving Contractors Germiston

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Commercial Paving Contractors in Germiston  except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Asphalt Surfacing Contractors Price

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Asphalt Driveway Near Me

The primary use (70%) of asphalt New Asphalt Driveway is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Alley

Asphalt Construction Quotes

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Commercial Paving Contractors Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Residential Paving Companies Costs

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Asphalt Paving Companies the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Residential Paving Cost Estimate

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Alley

Pave My Driveway Price

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Paving Services Price

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Asphalt Surfacing Contractors Price

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Paving Companies Near Me

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Installation Price

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Asphalt Road Price

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Sidewalk

Asphalt Surfacing Company Price

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Asphalt Installation Cost Estimate

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Driveway Paving Quotes

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Residential Paving Companies Quotes

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Asphalt Surfacing Contractors Price

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Asphalt Construction Quotes

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Driveway Pavers Near Me

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Paving Services Quotes

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Asphalt

Asphalt Paving Companies Price

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Asphalt Construction Quotes

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Paving Services Quotes

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Macadam

Driveway Pavers Cost Estimate

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Commercial Paving Contractors in Germiston ?

Pave My Driveway Costs A high-speed toll booth on SR 417 near Orlando, Florida, United States. A toll collection area in the United Kingdom. Hong Kong toll booth.

A toll road, also known as a turnpike or tollway, is a public or private road for which a fee (or toll) is assessed for passage. It is a form of road pricing typically implemented to help recoup the cost of road construction and maintenance.

Toll roads have existed in some form since antiquity, with tolls levied on passing travellers on foot, wagon or horseback; but their prominence increased with the rise of the automobile,[citation needed] and many modern tollways charge fees for motor vehicles exclusively. The amount of the toll usually varies by vehicle type, weight, or number of axles, with freight trucks often charged higher rates than cars.

Tolls are often collected at toll booths, toll houses, plazas, stations, bars, or gates. Some toll collection points are unmanned and the user deposits money in a machine which opens the gate once the correct toll has been paid. To cut costs and minimise time delay many tolls today are collected by some form of automatic or electronic toll collection equipment which communicates electronically with a toll payer's transponder. Some electronic toll roads also maintain a system of toll booths so people without transponders can still pay the toll, but many newer roads now use automatic number plate recognition to charge drivers who use the road without a transponder, and some older toll roads are being upgraded with such systems.

Criticisms of toll roads include the time taken to stop and pay the toll, and the cost of the toll booth operators—up to about one third of revenue in some cases. Automated toll paying systems help minimise both of these. Others object to paying "twice" for the same road: in fuel taxes and with tolls.

In addition to toll roads, toll bridges and toll tunnels are also used by public authorities to generate funds to repay the cost of building the structures. Some tolls are set aside to pay for future maintenance or enhancement of infrastructure, or are applied as a general fund by local governments, not being earmarked for transport facilities. This is sometimes limited or prohibited by central government legislation. Also road congestion pricing schemes have been implemented in a limited number of urban areas as a transportation demand management tool to try to reduce traffic congestion and air pollution.[1]

A table of tolls in pre-decimal currency for the College Road, Dulwich, London SE21 tollgate.

Toll roads have existed for at least the last 2,700 years, as tolls had to be paid by travellers using the Susa–Babylon highway under the regime of Ashurbanipal, who reigned in the 7th century BC.[2] Aristotle and Pliny refer to tolls in Arabia and other parts of Asia. In India, before the 4th century BC, the Arthashastra notes the use of tolls. Germanic tribes charged tolls to travellers across mountain passes.

A 14th-century example (though not for a road) is Castle Loevestein in the Netherlands, which was built at a strategic point where two rivers meet. River tolls were charged on boats sailing along the river. The Øresund in Scandinavia was once subject to a toll to the Danish Monarch, which once provided a sizable portion of the king's revenue.

Many modern European roads were originally constructed as toll roads in order to recoup the costs of construction, maintenance and as a source of tax money that is paid primarily by someone other than the local residents. In 14th-century England, some of the most heavily used roads were repaired with money raised from tolls by pavage grants. Widespread toll roads sometimes restricted traffic so much, by their high tolls, that they interfered with trade and cheap transportation needed to alleviate local famines or shortages.[3]

Tolls were used in the Holy Roman Empire in the 14th and 15th centuries.

Industrialisation in Europe needed major improvements to the transport infrastructure which included many new or substantially improved roads, financed from tolls. The A5 road in Britain was built to provide a robust transport link between Britain and Ireland and had a toll house every few miles.

In the 20th century, road tolls were introduced in Europe to finance the construction of motorway networks and specific transport infrastructure such as bridges and tunnels. Italy was the first European country to charge motorway tolls, on a 50 km motorway section near Milan in 1924. It was followed by Greece, which made users pay for the network of motorways around and between its cities in 1927. Later in the 1950s and 1960s, France, Spain and Portugal started to build motorways largely with the aid of concessions, allowing rapid development of this infrastructure without massive State debts. Since then, road tolls have been introduced in the majority of the EU Member States.[4]

In the United States, prior to the introduction of the Interstate Highway System and the large federal grants supplied to states to build it, many states constructed their first controlled-access highways by floating bonds backed by toll revenues. Starting with the Pennsylvania Turnpike in 1940, and followed by similar roads in New Jersey (Garden State Parkway (1946) and New Jersey Turnpike, 1952), New York (New York State Thruway, 1954), Massachusetts (Massachusetts Turnpike, 1957), and others, numerous states throughout the 1950s established major toll roads. With the establishment of the Interstate Highway System in the late 1950s, toll road construction in the U.S. slowed down considerably, as the federal government now provided the bulk of funding to construct new freeways, and regulations required that such Interstate highways be free from tolls. Many older toll roads were added to the Interstate System under a grandfather clause that allowed tolls to continue to be collected on toll roads that predated the system. Some of these such as the Connecticut Turnpike and the Richmond–Petersburg Turnpike later removed their tolls when the initial bonds were paid off. Many states, however, have maintained the tolling of these roads, however, as a consistent source of revenue.

As the Interstate Highway System approached completion during the 1980s, states began constructing toll roads again to provide new controlled-access highways which were not part of the original interstate system funding. Houston's outer beltway of interconnected toll roads began in 1983, and many states followed over the last two decades of the 20th century adding new toll roads, including the tollway system around Orlando, Florida, Colorado's E-470, and Georgia State Route 400.

London, in an effort to reduce traffic within the city, instituted the London congestion charge in 2003, effectively making all roads within the city tolled.

In the United States, as states looked for ways to construct new freeways without federal funding again, to raise revenue for continued road maintenance, and to control congestion, new toll road construction saw significant increases during the first two decades of the 21st century. Spurred on by two innovations, the electronic toll collection system, and the advent of high occupancy and express lane tolls, many areas of the U.S saw large road building projects in major urban areas. Electronic toll collection, first introduced in the 1980s, reduces operating costs by removing toll collectors from roads. Tolled express lanes, by which certain lanes of a freeway are designated "toll only", increases revenue by allowing a free-to-use highway collect revenue by allowing drivers to bypass traffic jams by paying a toll. The E-ZPass system, compatible with many state systems, is the largest ETC system in the U.S., and is used for both fully tolled highways and tolled express lanes. Maryland Route 200 and the Triangle Expressway in North Carolina were the first toll roads built without toll booths, with drivers charged via ETC or by optical license plate recognition and are billed by mail.

19th-century toll booth in Brooklyn, New York Toll bar in Romania, 1877 Plaque commemorating the suppression of toll on a York bridge in 1914. Main article: Toll roads in Great Britain

Turnpike trusts were established in England and Wales from about 1706 in response to the need for better roads than the few and poorly-maintained tracks then available. Turnpike trusts were set up by individual Acts of Parliament, with powers to collect road tolls to repay loans for building, improving, and maintaining the principal roads in Britain. At their peak, in the 1830s, over 1,000 trusts[5] administered around 30,000 miles (48,000 km) of turnpike road in England and Wales, taking tolls at almost 8,000 toll-gates.[6] The trusts were ultimately responsible for the maintenance and improvement of most of the main roads in England and Wales, which were used to distribute agricultural and industrial goods economically. The tolls were a source of revenue for road building and maintenance, paid for by road users and not from general taxation. The turnpike trusts were gradually abolished from the 1870s. Most trusts improved existing roads, but some new roads, usually only short stretches, were also built. Thomas Telford's Holyhead road followed Watling Street from London but was exceptional in creating a largely new route beyond Shrewsbury, and especially beyond Llangollen. Built in the early 19th century, with many toll booths along its length, most of it is now the A5. In the modern day, one major toll road is the M6 Toll, relieving traffic congestion on the M6 in Birmingham. A few notable bridges and tunnels continue as toll roads including the Severn Bridge, the Dartford Crossing and Mersey Gateway bridge.

Some cities in Canada had toll roads in the 19th century. Roads radiating from Toronto required users to pay at toll gates along the street (Yonge Street, Bloor Street, Davenport Road, Kingston Road)[7] and disappeared after 1895.[8]

19th-century plank roads were usually operated as toll roads. One of the first U.S. motor roads, the Long Island Motor Parkway (which opened on October 10, 1908) was built by William Kissam Vanderbilt II, the great-grandson of Cornelius Vanderbilt. The road was closed in 1938 when it was taken over by the state of New York in lieu of back taxes.[9][10]

Main article: Road pricing

Road tolls were levied traditionally for a specific access (e.g. city) or for a specific infrastructure (e.g. roads, bridges). These concepts were widely used until the last century. However, the evolution in technology made it possible to implement road tolling policies based on different concepts. The different charging concepts are designed to suit different requirements regarding purpose of the charge, charging policy, the network to the charge, tariff class differentiation etc.:[11]

Time Based Charges and Access Fees: In a time-based charging regime, a road user has to pay for a given period of time in which they may use the associated infrastructure. For the practically identical access fees, the user pays for the access to a restricted zone for a period or several days.

Motorway and other Infrastructure Tolling: The term tolling is used for charging a well-defined special and comparatively costly infrastructure, like a bridge, a tunnel, a mountain pass, a motorway concession or the whole motorway network of a country. Classically a toll is due when a vehicle passes a tolling station, be it a manual barrier-controlled toll plaza or a free-flow multi-lane station.

Distance or Area Charging: In a distance or area charging system concept, vehicles are charged per total distance driven in a defined area.

Some toll roads charge a toll in only one direction. Examples include the Sydney Harbour Bridge, Sydney Harbour Tunnel and Eastern Distributor (these all charge tolls city-bound) in Australia, the Severn Bridges where the M4 and M48 in Great Britain crosses the River Severn, in the United States, crossings between Pennsylvania and New Jersey operated by Delaware River Port Authority and crossings between New Jersey and New York operated by Port Authority of New York and New Jersey.This technique is practical where the detour to avoid the toll is large or the toll differences are small.

.

Balintawak toll plaza of the North Luzon Expressway in Caloocan, Philippines. The toll barrier has both electronic toll collection and cash payment in the same barrier, before a new toll plaza was added. Tipo toll plaza in Subic–Clark–Tarlac Expressway, Hermosa, Bataan The open road tolling lanes at the West 163rd Street toll plaza, on the Tri-State Tollway near Markham, Illinois, United States

.

Overhead cameras and reader attach to gantry on Highway 407 in Ontario. See also: Electronic toll collection

Traditionally tolls were paid by hand at a toll gate. Although payments may still be made in cash, it is more common now to pay by credit card, by pre-paid card,[citation needed] or by an electronic toll collection system. In some places, payment is made using stickers which are affixed to the windscreen.

Three systems of toll roads exist: open (with mainline barrier toll plazas); closed (with entry/exit tolls) and open road (no toll booths, only electronic toll collection gantries at entrances and exits, or at strategic locations on the mainline of the road). Modern toll roads often use a combination of the three, with various entry and exit tolls supplemented by occasional mainline tolls: for example the Pennsylvania Turnpike and the New York State Thruway implement both systems in different sections.

On an open toll system, all vehicles stop at various locations along the highway to pay a toll. (Not to be confused with "open road tolling", where no vehicles stop to pay toll.) While this may save money from the lack of need to construct toll booths at every exit, it can cause traffic congestion while traffic queues at the mainline toll plazas (toll barriers). It is also possible for motorists to enter an 'open toll road' after one toll barrier and exit before the next one, thus travelling on the toll road toll-free. Most open toll roads have ramp tolls or partial access junctions to prevent this practice, known in the U.S. as "shunpiking".

With a closed system, vehicles collect a ticket when entering the highway. In some cases, the ticket displays the toll to be paid on exit. Upon exit, the driver must pay the amount listed for the given exit. Should the ticket be lost, a driver must typically pay the maximum amount possible for travel on that highway. Short toll roads with no intermediate entries or exits may have only one toll plaza at one end, with motorists traveling in either direction paying a flat fee either when they enter or when they exit the toll road. In a variant of the closed toll system, mainline barriers are present at the two endpoints of the toll road, and each interchange has a ramp toll that is paid upon exit or entry. In this case, a motorist pays a flat fee at the ramp toll and another flat fee at the end of the toll road; no ticket is necessary. In addition, with most systems, motorists may pay tolls only with cash and/or change; debit and credit cards are not accepted. However, some toll roads may have travel plazas with ATMs so motorists can stop and withdraw cash for the tolls.

The toll is calculated by the distance travelled on the toll road or the specific exit chosen. In the United States, for instance, the Kansas Turnpike, Ohio Turnpike, Pennsylvania Turnpike, New Jersey Turnpike, most of the Indiana Toll Road, New York State Thruway, and Florida's Turnpike currently implement closed systems.

The Union Toll Plaza on the Garden State Parkway was the first ever to use an automated toll collection machine. A plaque commemorating the event includes the first quarter collected at its toll booths.[12]

The first major deployment of an RFID electronic toll collection system in the United States was on the Dallas North Tollway in 1989 by Amtech (see TollTag). The Amtech RFID technology used on the Dallas North Tollway was originally developed at Sandia Labs for use in tagging and tracking livestock. In the same year, the Telepass active transponder RFID system was introduced across Italy.

Highway 407 in the province of Ontario, Canada, has no toll booths, and instead reads a transponder mounted on the windshields of each vehicle using the road (the rear licence plates of vehicles lacking a transponder are photographed when they enter and exit the highway). This made the highway the first all-automated toll highway in the world. A bill is mailed monthly for usage of the 407. Lower charges are levied on frequent 407 users who carry electronic transponders in their vehicles. The approach has not been without controversy: In 2003 the 407 ETR settled[13] a class action with a refund to users.

Throughout most of the East Coast of the United States, E-ZPass (operated under the brand I-Pass in Illinois) is accepted on almost all toll roads. Similar systems include SunPass in Florida, FasTrak in California, Good to Go in Washington State, and ExpressToll in Colorado. The systems use a small radio transponder mounted in or on a customer's vehicle to deduct toll fares from a pre-paid account as the vehicle passes through the toll barrier. This reduces manpower at toll booths and increases traffic flow and fuel efficiency by reducing the need for complete stops to pay tolls at these locations.

E-ZPass lanes at a New Jersey Turnpike (I-95) Toll Gate for Exit 8A in Monroe Township, New Jersey, United States

By designing a tollgate specifically for electronic collection, it is possible to carry out open-road tolling, where the customer does not need to slow at all when passing through the tollgate. The U.S. state of Texas is testing a system on a stretch of Texas 121 that has no toll booths. Drivers without a TollTag have their license plate photographed automatically and the registered owner will receive a monthly bill, at a higher rate than those vehicles with TollTags.[14]

The first all-electric toll road in the eastern United States, the InterCounty Connector (Maryland Route 200) was partially opened to traffic in February 2011,[15] and the final segment was completed in November 2014.[16] The first section of another all-electronic toll road, the Triangle Expressway, opened at the beginning of 2012 in North Carolina.[17]

Some toll roads are managed under such systems as the Build-Operate-Transfer (BOT) system. Private companies build the roads and are given a limited franchise. Ownership is transferred to the government when the franchise expires. This type of arrangement is prevalent in Australia, Canada, Hong Kong, India, South Korea, Japan and the Philippines. The BOT system is a fairly new concept that is gaining ground in the United States, with California, Delaware, Florida, Illinois, Indiana, Mississippi,[18] Texas, and Virginia already building and operating toll roads under this scheme. Pennsylvania, Massachusetts, New Jersey, and Tennessee are also considering the BOT methodology for future highway projects.

The more traditional means of managing toll roads in the United States is through semi-autonomous public authorities. Kansas, Maryland, Massachusetts, New Hampshire, New Jersey, New York, North Carolina, Ohio, Oklahoma, Pennsylvania, and West Virginia manage their toll roads in this manner. While most of the toll roads in California, Delaware, Florida, Texas, and Virginia are operating under the BOT arrangement, a few of the older toll roads in these states are still operated by public authorities.

In France, all toll roads are operated by private companies, and the government takes a part of their profit.[citation needed]

Toll roads have been criticized as being inefficient in various ways:[19]

  1. They require vehicles to stop or slow down (except open road tolling); manual toll collection wastes time and raises vehicle operating costs.
  2. Collection costs can absorb up to one-third of revenues, and revenue theft is considered to be comparatively easy.
  3. Where the tolled roads are less congested than the parallel "free" roads, the traffic diversion resulting from the tolls increases congestion on the road system and reduces its usefulness.
  4. By tracking the vehicle locations, their drivers are subject to an effectual restriction of their freedom of movement and freedom from excessive surveillance.

A number of additional criticisms are also directed at toll roads in general:

  1. Toll roads are a form of regressive taxation; that is, compared to conventional taxes for funding roads, they benefit wealthier citizens more than poor citizens.[20][21]
  2. If toll roads are owned or managed by private entities, the citizens may lose money overall compared to conventional public funding because the private owners/operators of the toll system will naturally seek to profit from the roads.[22]
  3. The managing entities, whether public or private, may not correctly account for the overall social costs, particularly to the poor, when setting pricing and thus may hurt the neediest segments of society.[23]

Asphalt concrete

Paving Specialists Price A diagram illustrating traffic movements in the interchange Plan of rejected diverging diamond interchange in Findlay, Ohio

A diverging diamond interchange (DDI), also called a double crossover diamond interchange (DCD),[1] is a type of diamond interchange in which the two directions of traffic on the non-freeway road cross to the opposite side on both sides of the bridge at the freeway. It is unusual in that it requires traffic on the freeway overpass (or underpass) to briefly drive on the opposite side of the road from what is customary for the jurisdiction. The crossover "X" sections can either be traffic-light intersections or one-side overpasses to travel above the opposite lanes without stopping, to allow nonstop traffic flow when relatively sparse traffic.

Like the continuous flow intersection, the diverging diamond interchange allows for two-phase operation at all signalized intersections within the interchange. This is a significant improvement in safety, since no long turns (e.g. left turns where traffic drives on the right side of the road) must clear opposing traffic and all movements are discrete, with most controlled by traffic signals.[2] Its at-grade variant can be seen as a two-leg continuous flow intersection.[3]

Additionally, the design can improve the efficiency of an interchange, as the lost time for various phases in the cycle can be redistributed as green time—there are only two clearance intervals (the time for traffic signals to change from green to yellow to red) instead of the six or more found in other interchange designs.

A diverging diamond can be constructed for limited cost, at an existing straight-line bridge, by building crisscross intersections outside the bridge ramps to switch traffic lanes before entering the bridge. The switchover lanes, each with 2 side ramps, introduce a new risk of drivers turning onto an empty, wrong, do-not-enter, exit-lane and driving wrongway down a freeway exit ramp to confront high-speed, oncoming traffic. Studies have analyzed various roadsigns to reduce similar driver errors.

Diverging diamond roads have been used in France since the 1970s. However, the diverging diamond interchange was listed by Popular Science magazine as one of the best innovations in 2009 (engineering category) in "Best of What's New 2009".[4]

Pictures from the first diverging diamond interchange in the United States, in Springfield, Missouri
Top left: Traffic enters the interchange along Missouri Route 13
Top right: Traffic crosses over to the left side of the road
Bottom left: Traffic crosses over Interstate 44
Bottom right:Traffic crosses back over to the right side of the road. Southbound approach to the I-44/Route 13 interchange in Springfield

Prior to 2009 the only known diverging diamond interchanges were in France in the communities of Versailles, Le Perreux-sur-Marne (A4 at N486) and Seclin, all built in the 1970s.[5] (The ramps of the first two have been reconfigured to accommodate ramps of other interchanges, but they continue to function as diverging diamond interchanges.)

Despite the fact that such interchanges already existed, the idea for the DDI was "reinvented" around 2000, inspired by the former "synchronized split-phasing" type freeway-to-freeway interchange between Interstate 95 and I-695 north of Baltimore.[6]

In 2005, the Ohio Department of Transportation (ODOT) considered reconfiguring the existing interchange on Interstate 75 at U.S. Route 224 and State Route 15 west of Findlay as a diverging diamond interchange to improve traffic flow. Had it been constructed, it would have been the first DDI in the United States.[7] By 2006, ODOT had reconsidered, instead adding lanes to the existing overpass.[8][9]

The Missouri Department of Transportation was the first US agency to construct one, in Springfield at the junction between I-44 and Missouri Route 13 (at 37°15′01″N 93°18′39″W / 37.2503°N 93.3107°W / 37.2503; -93.3107 (Springfield, Missouri diverging diamond interchange)). Construction began the week of January 12, 2009, and the interchange opened on June 21, 2009.[10][11] This interchange was a conversion of an existing standard diamond interchange, and used the existing bridge.

The first interchange in Canada opened on August 13, 2017 at Macleod Trail and 162 Avenue South in Calgary, Alberta.[12]

The interchange in Seclin (at 50°32′41″N 3°3′21″E / 50.54472°N 3.05583°E / 50.54472; 3.05583) between the A1 and Route d'Avelin was somewhat more specialized than in the diagram at right: eastbound traffic on Route d'Avelin intending to enter the A1 northbound must keep left and cross the northernmost bridge before turning left to proceed north onto A1; eastbound traffic continuing east on Route d'Avelin must select a single center lane, merge with A1 traffic that is exiting to proceed east, and cross a center bridge. All westbound traffic that is continuing west or turning south onto A1 uses the southernmost bridge.

Additional research was conducted by a partnership of the Virginia Polytechnic Institute and State University and the Turner-Fairbank Highway Research Center and published by Ohio Section of the Institute of Transportation Engineers.[13] The Federal Highway Administration released a publication titled "Alternative Intersections/Interchanges: Informational Report (AIIR)" [14] with a chapter dedicated to this design.

As of January 19, 2018, 106 DDIs were operational across the world including:

3D computer generated DCMI DCMI traffic flow patterns

A free-flowing interchange variant, patented in 2015,[21] has received recent attention.[22][23][24] Called the double crossover merging interchange (DCMI), it includes elements from the diverging diamond interchange, the tight diamond interchange, and the stack interchange. It eliminates the disadvantages of weaving and of merging into the outside lane from which the standard DDI variation suffers. As of 2016, no such interchanges have been constructed.

Paving Specialists Price

https://www.helpwikileaks.co.za/southgate/

Help Wiki Leaks Have Asphalt Services List