Driveway Cost Johannesburg

How Do You Select The Best Driveway or Driveway Cost?

Driveway to a farm Driveway apron and sloped curb to a public street, all under construction

A driveway (also called drive in UK English) Driveway Cost  in Bryanston is a type of private road for local access to one or a small group of structures, and is owned and maintained by an individual or group.

Paver Repair Cost Estimate

Driveways rarely have traffic lights, but some that bear heavy traffic, especially those leading to commercial businesses and parks, do.

Driveways may be decorative in ways that public roads cannot, because of their lighter traffic and the willingness of owners to invest in their construction. Driveways are not resurfaced, snow blown or otherwise maintained by governments. They are generally designed to conform to the architecture of connected houses or other buildings.

Paver Repair Cost Estimate

Some of the materials that can be used for driveways include concrete, decorative brick, cobblestone, block paving, asphalt, gravel, decomposed granite, and surrounded with grass or other ground-cover plants.

Toll road

Paving Services Quotes

Driveways are commonly used as paths to private garages, carports, or houses. On large estates, a driveway may be the road that leads to the house from the public road, possibly with a gate in between. Some driveways divide to serve different homeowners. A driveway may also refer to a small apron of pavement in front of a garage with a curb cut in the sidewalk, sometimes too short to accommodate a car.

Paving Companies Quotes

Often, either by choice or to conform with local regulations, cars are parked in driveways in order to leave streets clear for traffic. Moreover, some jurisdictions prohibit parking or leaving standing any motor vehicle upon any residential lawn area (defined as the property from the front of a residential house, condominium, or cooperative to the street line other than a driveway, walkway, concrete or blacktopped surface parking space).[2] Other examples include the city of Berkeley, California that forbids “any person to park or leave standing, or cause to be parked or left standing any vehicle upon any public street in the City for seventy-two or more consecutive hours.”[3] Other areas may prohibit leaving vehicles on residential streets during certain times (for instance, to accommodate regular street cleaning), necessitating the use of driveways.

Macadam

Asphalt Driveway Price

Residential driveways are also used for such things as garage sales, automobile washing and repair, and recreation, notably (in North America) for basketball practice.

Another form of driveway is a ‘Run-Up’, or short piece of land used usually at the front of the property to park a vehicle on.[citation needed]

Interesting Facts About Driveway Cost in Rosebank:

About Driveway Cost in Rosebank:

Asphalt Contractors Near Me A single brick A wall constructed in glazed-headed Flemish bond with bricks of various shades and lengths Raw (green) Indian brick An old brick wall in English bond laid with alternating courses of headers and stretchers Bricked Front Street along the Cane River in historic Natchitoches, Louisiana

A brick is building material used to make walls, pavements and other elements in masonry construction. Traditionally, the term brick referred to a unit composed of clay, but it is now used to denote any rectangular units laid in mortar. A brick can be composed of clay-bearing soil, sand, and lime, or concrete materials. Bricks are produced in numerous classes, types, materials, and sizes which vary with region and time period, and are produced in bulk quantities. Two basic categories of bricks are fired and non-fired bricks.

Block is a similar term referring to a rectangular building unit composed of similar materials, but is usually larger than a brick. Lightweight bricks (also called lightweight blocks) are made from expanded clay aggregate.

Fired bricks are one of the longest-lasting and strongest building materials, sometimes referred to as artificial stone, and have been used since circa 5000 BC. Air-dried bricks, also known as mudbricks, have a history older than fired bricks, and have an additional ingredient of a mechanical binder such as straw.

Bricks are laid in courses and numerous patterns known as bonds, collectively known as brickwork, and may be laid in various kinds of mortar to hold the bricks together to make a durable structure.

House construction using bricks in Kerala, India The Roman Basilica Aula Palatina in Trier, Germany, built with fired bricks in the 4th century as an audience hall for Constantine I

The earliest bricks were dried brick, meaning that they were formed from clay-bearing earth or mud and dried (usually in the sun) until they were strong enough for use. The oldest discovered bricks, originally made from shaped mud and dating before 7500 BC, were found at Tell Aswad, in the upper Tigris region and in southeast Anatolia close to Diyarbakir.[1] Other more recent findings, dated between 7,000 and 6,395 BC, come from Jericho, Catal Hüyük, the ancient Egyptian fortress of Buhen, and the ancient Indus Valley cities of Mohenjo-daro, Harappa,[2] and Mehrgarh.[3] Ceramic, or fired brick was used as early as 3000 BC in early Indus Valley cities.[4]

The ancient Jetavanaramaya stupa in Anuradhapura, Sri Lanka is one of the largest brick structures in the world. The world's highest brick tower of St. Martin's Church in Landshut, Germany, completed in 1500 Malbork Castle, former Ordensburg of the Teutonic Order – biggest brick castle in the world

In pre-modern China, bricks were being used from the 2nd millennium BC at a site near Xi'an.[5] Bricks were produced on a larger scale under the Western Zhou dynasty about 3,000 years ago, and evidence for some of the first fired bricks ever produced has been discovered in ruins dating back to the Zhou.[6][7][8] The carpenter's manual Yingzao Fashi, published in 1103 at the time of the Song dynasty described the brick making process and glazing techniques then in use. Using the 17th century encyclopaedic text Tiangong Kaiwu, historian Timothy Brook outlined the brick production process of Ming Dynasty China:

"...the kilnmaster had to make sure that the temperature inside the kiln stayed at a level that caused the clay to shimmer with the colour of molten gold or silver. He also had to know when to quench the kiln with water so as to produce the surface glaze. To anonymous labourers fell the less skilled stages of brick production: mixing clay and water, driving oxen over the mixture to trample it into a thick paste, scooping the paste into standardised wooden frames (to produce a brick roughly 42 cm long, 20 cm wide, and 10 cm thick), smoothing the surfaces with a wire-strung bow, removing them from the frames, printing the fronts and backs with stamps that indicated where the bricks came from and who made them, loading the kilns with fuel (likelier wood than coal), stacking the bricks in the kiln, removing them to cool while the kilns were still hot, and bundling them into pallets for transportation. It was hot, filthy work." The brickwork of Shebeli Tower in Iran displays 12th-century craftsmanship Main article: Roman brick

Early civilisations around the Mediterranean adopted the use of fired bricks, including the Ancient Greeks and Romans. The Roman legions operated mobile kilns,[9] and built large brick structures throughout the Roman Empire, stamping the bricks with the seal of the legion.

During the Early Middle Ages the use of bricks in construction became popular in Northern Europe, after being introduced there from Northern-Western Italy. An independent style of brick architecture, known as brick Gothic (similar to Gothic architecture) flourished in places that lacked indigenous sources of rocks. Examples of this architectural style can be found in modern-day Denmark, Germany, Poland, and Russia.

This style evolved into Brick Renaissance as the stylistic changes associated with the Italian Renaissance spread to northern Europe, leading to the adoption of Renaissance elements into brick building. A clear distinction between the two styles only developed at the transition to Baroque architecture. In Lübeck, for example, Brick Renaissance is clearly recognisable in buildings equipped with terracotta reliefs by the artist Statius von Düren, who was also active at Schwerin (Schwerin Castle) and Wismar (Fürstenhof).

Chile house in Hamburg, Germany

Long-distance bulk transport of bricks and other construction equipment remained prohibitively expensive until the development of modern transportation infrastructure, with the construction of canal, roads, and railways.

Production of bricks increased massively with the onset of the Industrial Revolution and the rise in factory building in England. For reasons of speed and economy, bricks were increasingly preferred as building material to stone, even in areas where the stone was readily available. It was at this time in London that bright red brick was chosen for construction to make the buildings more visible in the heavy fog and to help prevent traffic accidents.[10]

The transition from the traditional method of production known as hand-moulding to a mechanised form of mass-production slowly took place during the first half of the nineteenth century. Possibly the first successful brick-making machine was patented by Henry Clayton, employed at the Atlas Works in Middlesex, England, in 1855, and was capable of producing up to 25,000 bricks daily with minimal supervision.[11] His mechanical apparatus soon achieved widespread attention after it was adopted for use by the South Eastern Railway Company for brick-making at their factory near Folkestone.[12] The Bradley & Craven Ltd ‘Stiff-Plastic Brickmaking Machine’ was patented in 1853, apparently predating Clayton. Bradley & Craven went on to be a dominant manufacturer of brickmaking machinery.[13] Predating both Clayton and Bradley & Craven Ltd. however was the brick making machine patented by Richard A. Ver Valen of Haverstraw, New York in 1852.[14]

The demand for high office building construction at the turn of the 20th century led to a much greater use of cast and wrought iron, and later, steel and concrete. The use of brick for skyscraper construction severely limited the size of the building – the Monadnock Building, built in 1896 in Chicago, required exceptionally thick walls to maintain the structural integrity of its 17 storeys.

Following pioneering work in the 1950s at the Swiss Federal Institute of Technology and the Building Research Establishment in Watford, UK, the use of improved masonry for the construction of tall structures up to 18 storeys high was made viable. However, the use of brick has largely remained restricted to small to medium-sized buildings, as steel and concrete remain superior materials for high-rise construction.[15]

This wall in Beacon Hill, Boston shows different types of brickwork and stone foundations

There are thousands of types of bricks that are named for their use, size, forming method, origin, quality, texture, and/or materials.

Categorized by manufacture method:

Categorized by use:

Specialized use bricks:

Bricks named for place of origin:

Brick making at the beginning of the 20th century.

Three basic types of brick are un-fired, fired, and chemically set bricks. Each type is manufactured differently.

Main article: Mudbrick

Unfired bricks, also known as mudbricks, are made from a wet, clay-containing soil mixed with straw or similar binders. They are air-dried until ready for use.

Raw bricks sun-drying before being fired

Fired bricks are burned in a kiln which makes them durable. Modern, fired, clay bricks are formed in one of three processes – soft mud, dry press, or extruded. Depending on the country, either the extruded or soft mud method is the most common, since they are the most economical.

Normally, bricks contain the following ingredients:[16]

  1. Silica (sand) – 50% to 60% by weight
  2. Alumina (clay) – 20% to 30% by weight
  3. Lime – 2 to 5% by weight
  4. Iron oxide – ≤ 7% by weight
  5. Magnesia – less than 1% by weight

Three main methods are used for shaping the raw materials into bricks to be fired:

Xhosa brickmaker at kiln near Ngcobo in 2007

In many modern brickworks, bricks are usually fired in a continuously fired tunnel kiln, in which the bricks are fired as they move slowly through the kiln on conveyors, rails, or kiln cars, which achieves a more consistent brick product. The bricks often have lime, ash, and organic matter added, which accelerates the burning process.

A brickmaker in India – Tashrih al-aqvam (1825)

The other major kiln type is the Bull's Trench Kiln (BTK), based on a design developed by British engineer W. Bull in the late 19th century.

An oval or circular trench is dug, 6–9 metres wide, 2-2.5 metres deep, and 100–150 metres in circumference. A tall exhaust chimney is constructed in the centre. Half or more of the trench is filled with "green" (unfired) bricks which are stacked in an open lattice pattern to allow airflow. The lattice is capped with a roofing layer of finished brick.

In operation, new green bricks, along with roofing bricks, are stacked at one end of the brick pile; cooled finished bricks are removed from the other end for transport to their destinations. In the middle, the brick workers create a firing zone by dropping fuel (coal, wood, oil, debris, and so on) through access holes in the roof above the trench.

The advantage of the BTK design is a much greater energy efficiency compared with clamp or scove kilns. Sheet metal or boards are used to route the airflow through the brick lattice so that fresh air flows first through the recently burned bricks, heating the air, then through the active burning zone. The air continues through the green brick zone (pre-heating and drying the bricks), and finally out the chimney, where the rising gases create suction that pulls air through the system. The reuse of heated air yields savings in fuel cost.

As with the rail process, the BTK process is continuous. A half-dozen labourers working around the clock can fire approximately 15,000–25,000 bricks a day. Unlike the rail process, in the BTK process the bricks do not move. Instead, the locations at which the bricks are loaded, fired, and unloaded gradually rotate through the trench.[17]

Yellow London Stocks at Waterloo station

The fired colour of tired clay bricks is influenced by the chemical and mineral content of the raw materials, the firing temperature, and the atmosphere in the kiln. For example, pink bricks are the result of a high iron content, white or yellow bricks have a higher lime content. Most bricks burn to various red hues; as the temperature is increased the colour moves through dark red, purple, and then to brown or grey at around 1,300 °C (2,372 °F). The names of bricks may reflect their origin and colour, such as London stock brick and Cambridgeshire White. Brick tinting may be performed to change the colour of bricks to blend-in areas of brickwork with the surrounding masonry.

An impervious and ornamental surface may be laid on brick either by salt glazing, in which salt is added during the burning process, or by the use of a slip, which is a glaze material into which the bricks are dipped. Subsequent reheating in the kiln fuses the slip into a glazed surface integral with the brick base.

Chemically set bricks are not fired but may have the curing process accelerated by the application of heat and pressure in an autoclave.

Swedish Mexitegel is a sand-lime or lime-cement brick.

Calcium-silicate bricks are also called sandlime or flintlime bricks, depending on their ingredients. Rather than being made with clay they are made with lime binding the silicate material. The raw materials for calcium-silicate bricks include lime mixed in a proportion of about 1 to 10 with sand, quartz, crushed flint, or crushed siliceous rock together with mineral colourants. The materials are mixed and left until the lime is completely hydrated; the mixture is then pressed into moulds and cured in an autoclave for three to fourteen hours to speed the chemical hardening.[18] The finished bricks are very accurate and uniform, although the sharp arrises need careful handling to avoid damage to brick and bricklayer. The bricks can be made in a variety of colours; white, black, buff, and grey-blues are common, and pastel shades can be achieved. This type of brick is common in Sweden, especially in houses built or renovated in the 1970s. In India these are known as fly ash bricks, manufactured using the FaL-G (fly ash, lime, and gypsum) process. Calcium-silicate bricks are also manufactured in Canada and the United States, and meet the criteria set forth in ASTM C73 – 10 Standard Specification for Calcium Silicate Brick (Sand-Lime Brick).

Main article: Concrete masonry unit A concrete brick-making assembly line in Guilinyang Town, Hainan, China. This operation produces a pallet containing 42 bricks, approximately every 30 seconds.

Bricks formed from concrete are usually termed as blocks, and are typically pale grey. They are made from a dry, small aggregate concrete which is formed in steel moulds by vibration and compaction in either an "egglayer" or static machine. The finished blocks are cured, rather than fired, using low-pressure steam. Concrete blocks are manufactured in a much wider range of shapes and sizes than clay bricks and are also available with a wider range of face treatments – a number of which simulate the appearance of clay bricks.

Concrete bricks are available in many colours and as an engineering brick made with sulfate-resisting Portland cement or equivalent. When made with adequate amount of cement they are suitable for harsh environments such as wet conditions and retaining walls. They are made to standards BS 6073, EN 771-3 or ASTM C55. Concrete bricks contract or shrink so they need movement joints every 5 to 6 metres, but are similar to other bricks of similar density in thermal and sound resistance and fire resistance.[18]

Main article: Compressed earth block

Compressed earth blocks are made mostly from slightly moistened local soils compressed with a mechanical hydraulic press or manual lever press. A small amount of a cement binder may be added, resulting in a stabilised compressed earth block.

Comparison of typical brick sizes of assorted countries with isometric projections with dimensions in mm Loose bricks

For efficient handling and laying, bricks must be small enough and light enough to be picked up by the bricklayer using one hand (leaving the other hand free for the trowel). Bricks are usually laid flat, and as a result, the effective limit on the width of a brick is set by the distance which can conveniently be spanned between the thumb and fingers of one hand, normally about four inches (about 100 mm). In most cases, the length of a brick is about twice its width, about eight inches (about 200 mm) or slightly more. This allows bricks to be laid bonded in a structure which increases stability and strength (for an example, see the illustration of bricks laid in English bond, at the head of this article). The wall is built using alternating courses of stretchers, bricks laid longways, and headers, bricks laid crossways. The headers tie the wall together over its width. In fact, this wall is built in a variation of English bond called English cross bond where the successive layers of stretchers are displaced horizontally from each other by half a brick length. In true English bond, the perpendicular lines of the stretcher courses are in line with each other.

A bigger brick makes for a thicker (and thus more insulating) wall. Historically, this meant that bigger bricks were necessary in colder climates (see for instance the slightly larger size of the Russian brick in table below), while a smaller brick was adequate, and more economical, in warmer regions. A notable illustration of this correlation is the Green Gate in Gdansk; built in 1571 of imported Dutch brick, too small for the colder climate of Gdansk, it was notorious for being a chilly and drafty residence. Nowadays this is no longer an issue, as modern walls typically incorporate specialised insulation materials.

The correct brick for a job can be selected from a choice of colour, surface texture, density, weight, absorption, and pore structure, thermal characteristics, thermal and moisture movement, and fire resistance.

In England, the length and width of the common brick has remained fairly constant over the centuries (but see brick tax), but the depth has varied from about two inches (about 51 mm) or smaller in earlier times to about two and a half inches (about 64 mm) more recently. In the United Kingdom, the usual size of a modern brick is 215 × 102.5 × 65 mm (about ​8 5⁄8 × ​4 1⁄8 × ​2 5⁄8 inches), which, with a nominal 10 mm (​3⁄8 inch) mortar joint, forms a unit size of 225 × 112.5 × 75 mm (9 × ​4 1⁄2 × 3 inches), for a ratio of 6:3:2.

In the United States, modern standard bricks are specified for various uses;[19] most are sized at about 8 × ​3 5⁄8  × ​2 1⁄4 inches (203 × 92 × 57 mm). The more commonly used is the modular brick ​7 5⁄8  × ​3 5⁄8  × ​2 1⁄4 inches (194 × 92 × 57 mm). This modular brick of ​7 5⁄8 with a ​3⁄8 mortar joint eases the calculation of the number of bricks in a given wall.[20]

Some brickmakers create innovative sizes and shapes for bricks used for plastering (and therefore not visible on the inside of the building) where their inherent mechanical properties are more important than their visual ones.[21] These bricks are usually slightly larger, but not as large as blocks and offer the following advantages:

Blocks have a much greater range of sizes. Standard co-ordinating sizes in length and height (in mm) include 400×200, 450×150, 450×200, 450×225, 450×300, 600×150, 600×200, and 600×225; depths (work size, mm) include 60, 75, 90, 100, 115, 140, 150, 190, 200, 225, and 250. They are usable across this range as they are lighter than clay bricks. The density of solid clay bricks is around 2000 kg/m³: this is reduced by frogging, hollow bricks, and so on, but aerated autoclaved concrete, even as a solid brick, can have densities in the range of 450–850 kg/m³.

Bricks may also be classified as solid (less than 25% perforations by volume, although the brick may be "frogged," having indentations on one of the longer faces), perforated (containing a pattern of small holes through the brick, removing no more than 25% of the volume), cellular (containing a pattern of holes removing more than 20% of the volume, but closed on one face), or hollow (containing a pattern of large holes removing more than 25% of the brick's volume). Blocks may be solid, cellular or hollow

The term "frog" can refer to the indentation or the implement used to make it. Modern brickmakers usually use plastic frogs but in the past they were made of wood.

Brick arch from a vault in Roman Bath – England A brick section of the old Dixie Highway, United States

The compressive strength of bricks produced in the United States ranges from about 1000 lbf/in² to 15,000 lbf/in² (7 to 105 MPa or N/mm² ), varying according to the use to which the brick are to be put. In England clay bricks can have strengths of up to 100 MPa, although a common house brick is likely to show a range of 20–40 MPa.

In the United States, bricks have been used for both buildings and pavements. Examples of brick use in buildings can be seen in colonial era buildings and other notable structures around the country. Bricks have been used in pavements especially during the late 19th century and early 20th century. The introduction of asphalt and concrete reduced the use of brick pavements, but it is used as a method of traffic calming or as a decorative surface in pedestrian precincts. For example, in the early 1900s, most of the streets in the city of Grand Rapids, Michigan, were paved with bricks. Today, there are only about 20 blocks of brick-paved streets remaining (totalling less than 0.5 percent of all the streets in the city limits).[22] Much like in Grand Rapids, municipalities across the United States began replacing brick streets with inexpensive asphalt concrete by the mid-20th century.[23]

Bricks in the metallurgy and glass industries are often used for lining furnaces, in particular refractory bricks such as silica, magnesia, chamotte and neutral (chromomagnesite) refractory bricks. This type of brick must have good thermal shock resistance, refractoriness under load, high melting point, and satisfactory porosity. There is a large refractory brick industry, especially in the United Kingdom, Japan, the United States, Belgium and the Netherlands.

In Northwest Europe, bricks have been used in construction for centuries. Until recently, almost all houses were built almost entirely from bricks. Although many houses are now built using a mixture of concrete blocks and other materials, many houses are skinned with a layer of bricks on the outside for aesthetic appeal.

Engineering bricks are used where strength, low water porosity or acid (flue gas) resistance are needed.

In the UK a red brick university is one founded in the late 19th or early 20th century. The term is used to refer to such institutions collectively to distinguish them from the older Oxbridge institutions, and refers to the use of bricks, as opposed to stone, in their buildings.

Colombian architect Rogelio Salmona was noted for his extensive use of red bricks in his buildings and for using natural shapes like spirals, radial geometry and curves in his designs.[24] Most buildings in Colombia are made of brick, given the abundance of clay in equatorial countries like this one.

Starting in the 20th century, the use of brickwork declined in some areas due to concerns with earthquakes. Earthquakes such as the San Francisco earthquake of 1906 and the 1933 Long Beach earthquake revealed the weaknesses of unreinforced brick masonry in earthquake-prone areas. During seismic events, the mortar cracks and crumbles, and the bricks are no longer held together. Brick masonry with steel reinforcement, which helps hold the masonry together during earthquakes, was used to replace many of the unreinforced masonry buildings. Retrofitting older unreinforced masonry structures has been mandated in many jurisdictions.

A panorama after the 1906 San Francisco earthquake.

Driveway Cost in Rosebank

Paving Companies Quotes Moderate to severe Fatigue cracking.

Crocodile cracking, also called alligator cracking and perhaps misleadingly fatigue cracking, is a common type of distress in asphalt pavement. The following is more closely related to fatigue cracking which is characterized by interconnecting or interlaced cracking in the asphalt layer resembling the hide of a crocodile.[1] Cell sizes can vary in size up to 11.80 inches (300 mm) across, but are typically less than 5.90 inches (150 mm) across. Fatigue cracking is generally a loading failure,[1] but numerous factors can contribute to it. It is often a sign of sub-base failure, poor drainage, or repeated over-loadings. It is important to prevent fatigue cracking, and repair as soon as possible, as advanced cases can be very costly to repair and can lead to formation of potholes or premature pavement failure.

It is usually studied under the transportation section of civil engineering.

Fatigue cracking is an asphalt pavement distress most often instigated by failure of the surface due to traffic loading. However, fatigue cracking can be greatly influenced by environmental and other effects while traffic loading remains the direct cause. Frequently, overloading happens because the base or subbase inadequately support the surface layer and subsequently cannot handle loads that it would normally endure.[2] There are many ways that the subbase or base can be weakened.

Poor drainage in the road bed is a frequent cause of this degradation of the base or subgrade.[1] A heavy spring thaw, similarly to poor drainage, can weaken the base course, leading to fatigue cracking.[1]

Stripping or raveling is another possible cause of fatigue cracking. Stripping occurs when poor adhesion between asphalt and aggregate allows the aggregate at the surface to dislodge. If left uncorrected, this reduces the thickness of the pavement, reducing the affected portion's ability to carry its designed loading.[1] This can cause fatigue cracking to develop rapidly, as overloading will happen with loads of less magnitude or frequency.

Edge cracking is the formation of crescent-shaped cracks near the edge of a road.[3] It is caused by lack of support of the road edge, sometimes due to poorly drained or weak shoulders. If left untreated, additional cracks will form until it resembles fatigue cracking.[3] Like wheel-path fatigue cracking, poor drainage is a main cause of edge cracking, as it weakens the base, which hastens the deterioration of the pavement.[4] Water ponding (a buildup of water which can also be called puddling) happens more frequently near the edge than in the center of the road path, as roads are usually sloped to prevent in-lane ponding. This leads to excess moisture in the shoulders and subbase at the road edge. Edge cracking differs from fatigue cracking in that the cracks form from the top down, where fatigue cracks usually start at the bottom and propagate to the surface.

Fatigue cracking manifests itself initially as longitudinal cracking (cracks along the direction of the flow of traffic) in the top layer of the asphalt.[5] These cracks are initially thin and sparsely distributed. If further deterioration is allowed, these longitudinal cracks are connected by transverse cracks to form sharp sided, prismatic pieces. This interlaced cracking pattern resembles the scales on the back of a crocodile or alligator, hence the nickname, crocodile cracking.

More severe cases involve pumping of fines, spalling, and loose pieces of pavement. The most severe cases of fatigue cracking often occur with other pavement distresses, but are exemplified by: potholes,[1] large cracks(3/8" or larger), and severely spalled edges.[4]

There are many different ways to measure fatigue cracking, but in general a pavement distress manual or index will be used. For example, the Pavement Condition Index is widely used to quantify the overall level of distress and condition of a section of road. Measurement of fatigue cracking specifically (and pavement distress in general) is necessary to determine the overall condition of a road, and for determination of a time-line for rehabilitation and/or repair. There are many other rating systems, and many rating systems currently in use are based on the AASHO Road Test.

There are two important criteria to take into account when measuring fatigue cracking. The first is the extent of the cracking. This is the amount of road surface area which is affected by this pavement distress. The second criterion is the severity of the cracking.[6] Severity, which has been discussed above, refers to how far the cracking has progressed, and is often directly a function of crack width.[6] Severity may be rated numerically, or given a rating from "low" to "severe". The rating may be entered into a pavement management system, which will suggest a priority and method for the repair.

Systems have been developed that detect fatigue cracking and other types of pavement distress automatically.[7] They measure the severity and frequency of alligator cracking on the road-path. One such machine is the road surface profilometer, which is mounted on a vehicle and measures the profile of the road surface while it is moving down the roadway.

Preventing fatigue cracking can be as simple as preventing the common causes. For example, reducing overloading on an asphalt pavement or improving drainage[2] can prevent fatigue cracking in many cases. Prevention primarily depends on designing and constructing the pavement and subbase to support the expected traffic loads, and providing good drainage to keep water out of the subbase.

A good strategy to prevent overloading, which is a main cause of fatigue cracking, is to increase the depth of the asphalt layer. According to certain researchers, pavements that exceed a certain minimum strength or thickness can hypothetically handle infinitely many loads without showing structural defects, including fatigue cracking.[1] These pavements are called perpetual pavements or long-term performance pavements (LTPP).

When repairing pavement affected by fatigue cracking, the main cause of the distress should be determined. However, often the specific cause is fairly difficult to determine, and prevention is therefore correspondingly difficult. Any investigation should involve digging a pit or coring the pavement and subbase to determine the pavement's structural makeup as well as determining whether or not subsurface moisture is a contributing factor.[1] The repair needed also differs based on the severity and extent of the cracking.

In the early stages, sealing cracks with crack sealant limits further deterioration of the subgrade due to moisture penetration. Small areas may be repaired by removal of the affected area, and replacement with new base and asphalt surface.[2] Once the damage has progressed or the affected area is large and extensive, a structural asphalt overlay or complete reconstruction is necessary to ensure structural integrity. Proper repair may include first sealing cracks with crack sealant, installing paving fabric over a tack coat, or milling the damaged asphalt. An overlay of hot mix asphalt is then placed over the completed repair. [2]

Bleeding (roads)

Asphalt Driveway Price A diagram illustrating traffic movements in the interchange Plan of rejected diverging diamond interchange in Findlay, Ohio

A diverging diamond interchange (DDI), also called a double crossover diamond interchange (DCD),[1] is a type of diamond interchange in which the two directions of traffic on the non-freeway road cross to the opposite side on both sides of the bridge at the freeway. It is unusual in that it requires traffic on the freeway overpass (or underpass) to briefly drive on the opposite side of the road from what is customary for the jurisdiction. The crossover "X" sections can either be traffic-light intersections or one-side overpasses to travel above the opposite lanes without stopping, to allow nonstop traffic flow when relatively sparse traffic.

Like the continuous flow intersection, the diverging diamond interchange allows for two-phase operation at all signalized intersections within the interchange. This is a significant improvement in safety, since no long turns (e.g. left turns where traffic drives on the right side of the road) must clear opposing traffic and all movements are discrete, with most controlled by traffic signals.[2] Its at-grade variant can be seen as a two-leg continuous flow intersection.[3]

Additionally, the design can improve the efficiency of an interchange, as the lost time for various phases in the cycle can be redistributed as green time—there are only two clearance intervals (the time for traffic signals to change from green to yellow to red) instead of the six or more found in other interchange designs.

A diverging diamond can be constructed for limited cost, at an existing straight-line bridge, by building crisscross intersections outside the bridge ramps to switch traffic lanes before entering the bridge. The switchover lanes, each with 2 side ramps, introduce a new risk of drivers turning onto an empty, wrong, do-not-enter, exit-lane and driving wrongway down a freeway exit ramp to confront high-speed, oncoming traffic. Studies have analyzed various roadsigns to reduce similar driver errors.

Diverging diamond roads have been used in France since the 1970s. However, the diverging diamond interchange was listed by Popular Science magazine as one of the best innovations in 2009 (engineering category) in "Best of What's New 2009".[4]

Pictures from the first diverging diamond interchange in the United States, in Springfield, Missouri
Top left: Traffic enters the interchange along Missouri Route 13
Top right: Traffic crosses over to the left side of the road
Bottom left: Traffic crosses over Interstate 44
Bottom right:Traffic crosses back over to the right side of the road. Southbound approach to the I-44/Route 13 interchange in Springfield

Prior to 2009 the only known diverging diamond interchanges were in France in the communities of Versailles, Le Perreux-sur-Marne (A4 at N486) and Seclin, all built in the 1970s.[5] (The ramps of the first two have been reconfigured to accommodate ramps of other interchanges, but they continue to function as diverging diamond interchanges.)

Despite the fact that such interchanges already existed, the idea for the DDI was "reinvented" around 2000, inspired by the former "synchronized split-phasing" type freeway-to-freeway interchange between Interstate 95 and I-695 north of Baltimore.[6]

In 2005, the Ohio Department of Transportation (ODOT) considered reconfiguring the existing interchange on Interstate 75 at U.S. Route 224 and State Route 15 west of Findlay as a diverging diamond interchange to improve traffic flow. Had it been constructed, it would have been the first DDI in the United States.[7] By 2006, ODOT had reconsidered, instead adding lanes to the existing overpass.[8][9]

The Missouri Department of Transportation was the first US agency to construct one, in Springfield at the junction between I-44 and Missouri Route 13 (at 37°15′01″N 93°18′39″W / 37.2503°N 93.3107°W / 37.2503; -93.3107 (Springfield, Missouri diverging diamond interchange)). Construction began the week of January 12, 2009, and the interchange opened on June 21, 2009.[10][11] This interchange was a conversion of an existing standard diamond interchange, and used the existing bridge.

The first interchange in Canada opened on August 13, 2017 at Macleod Trail and 162 Avenue South in Calgary, Alberta.[12]

The interchange in Seclin (at 50°32′41″N 3°3′21″E / 50.54472°N 3.05583°E / 50.54472; 3.05583) between the A1 and Route d'Avelin was somewhat more specialized than in the diagram at right: eastbound traffic on Route d'Avelin intending to enter the A1 northbound must keep left and cross the northernmost bridge before turning left to proceed north onto A1; eastbound traffic continuing east on Route d'Avelin must select a single center lane, merge with A1 traffic that is exiting to proceed east, and cross a center bridge. All westbound traffic that is continuing west or turning south onto A1 uses the southernmost bridge.

Additional research was conducted by a partnership of the Virginia Polytechnic Institute and State University and the Turner-Fairbank Highway Research Center and published by Ohio Section of the Institute of Transportation Engineers.[13] The Federal Highway Administration released a publication titled "Alternative Intersections/Interchanges: Informational Report (AIIR)" [14] with a chapter dedicated to this design.

As of January 19, 2018, 106 DDIs were operational across the world including:

3D computer generated DCMI DCMI traffic flow patterns

A free-flowing interchange variant, patented in 2015,[21] has received recent attention.[22][23][24] Called the double crossover merging interchange (DCMI), it includes elements from the diverging diamond interchange, the tight diamond interchange, and the stack interchange. It eliminates the disadvantages of weaving and of merging into the outside lane from which the standard DDI variation suffers. As of 2016, no such interchanges have been constructed.

Asphalt Contractors Near Me