Asphalt Companies Waterfall

How Do You Select The Best Driveway or Asphalt Companies?

Driveway to a farm Driveway apron and sloped curb to a public street, all under construction

A driveway (also called drive in UK English) Asphalt Companies  in Midrand is a type of private road for local access to one or a small group of structures, and is owned and maintained by an individual or group.

Driveway Pavers Near Me

Driveways rarely have traffic lights, but some that bear heavy traffic, especially those leading to commercial businesses and parks, do.

Driveways may be decorative in ways that public roads cannot, because of their lighter traffic and the willingness of owners to invest in their construction. Driveways are not resurfaced, snow blown or otherwise maintained by governments. They are generally designed to conform to the architecture of connected houses or other buildings.

Asphalt Driveway Repair Quotes

Some of the materials that can be used for driveways include concrete, decorative brick, cobblestone, block paving, asphalt, gravel, decomposed granite, and surrounded with grass or other ground-cover plants.


Asphalt Driveway Price

Driveways are commonly used as paths to private garages, carports, or houses. On large estates, a driveway may be the road that leads to the house from the public road, possibly with a gate in between. Some driveways divide to serve different homeowners. A driveway may also refer to a small apron of pavement in front of a garage with a curb cut in the sidewalk, sometimes too short to accommodate a car.

Asphalt Road Price

Often, either by choice or to conform with local regulations, cars are parked in driveways in order to leave streets clear for traffic. Moreover, some jurisdictions prohibit parking or leaving standing any motor vehicle upon any residential lawn area (defined as the property from the front of a residential house, condominium, or cooperative to the street line other than a driveway, walkway, concrete or blacktopped surface parking space).[2] Other examples include the city of Berkeley, California that forbids “any person to park or leave standing, or cause to be parked or left standing any vehicle upon any public street in the City for seventy-two or more consecutive hours.”[3] Other areas may prohibit leaving vehicles on residential streets during certain times (for instance, to accommodate regular street cleaning), necessitating the use of driveways.

Bleeding (roads)

Tarmac Driveways Near Me

Residential driveways are also used for such things as garage sales, automobile washing and repair, and recreation, notably (in North America) for basketball practice.

Another form of driveway is a ‘Run-Up’, or short piece of land used usually at the front of the property to park a vehicle on.[citation needed]

Interesting Facts About Asphalt Companies in Morningside:

About Asphalt Companies in Morningside:

Asphalt Contractors Near Me Thru lanes indicated by arrows on California CR G4 (Montague Expressway) in Silicon Valley.

In the context of traffic control, a lane is part of a roadway (carriageway) that is designated for use by a single line of vehicles, to control and guide drivers and reduce traffic conflicts.[1] Most public roads (highways) have at least two lanes, one for traffic in each direction, separated by lane markings. On multilane roadways and busier two-lane roads, lanes are designated with road surface markings. Major highways often have two multi-lane roadways separated by a median.

Some roads and bridges that carry very low volumes of traffic are less than 15 feet (4.6 m) wide, and are only a single lane wide. Vehicles travelling in opposite directions must slow or stop to pass each other. In rural areas, these are often called country lanes. In urban areas, alleys are often only one lane wide. Urban and suburban one lane roads are often designated for one-way traffic.

Lane capacity varies widely due to conditions such as neighboring lanes, lane width, elements next to the road, number of driveways, presence of parking, speed limits, number of heavy vehicles and so on – the range can be as low as 1000 passenger cars / hour to as high as 4800 passenger cars /hour but mostly falls between 1500 and 2400 passenger cars / hour.[2]

The Ontario Highway 401 in the Greater Toronto area, with 17 travel lanes in 6 separate carriageways visible in the midground. Turning lane on the Rodovia BR-101 (Brazil) Play media Changing lanes, Gothenburg, Sweden Transfer lanes, connecting surface collector lanes with through lanes between two tunnels A left-turn merging lane in Germany, needing explanation by a crafted sign These usages lead to the phrases life in the slow lane and life in the fast lane, used to describe relaxed or busy lifestyles, respectively and used as the titles of various books and songs.

While in general, wider lanes are associated with a reduction in crashes,[7] in urban settings both narrow (less than 2.8 m) and wide (over 3.1~3.2 m) lanes increase crash risks.[8] Wider lanes (over 3.3~3.4m) are associated with 33% higher impact speeds, as well as higher crash rates. Carrying capacity is also maximal at a width of 3 to 3.1 metres (9.8 to 10.2 ft), both for motor traffic and for bicycles. Pedestrian volume declines as lanes widen, and intersections with narrower lanes provide the highest capacity for bicycles.[9] As lane width decreases, traffic speed diminishes.[10]

Advocates for safety of people walking and people on bikes, and many new urbanists disagree with traditional thinking in traffic engineering, saying that safety and capacity are not adversely impacted by reducing lanes widths to as little as 10 feet (3.0 m).[11] Moreover, wider travel lanes also increase exposure and crossing distance for pedestrians at intersections and midblock crossings.

assumed widths and heights in road design for Europe (in meters)

The widths of vehicle lanes typically vary from 9 to 15 feet (2.7 to 4.6 m). Lane widths are commonly narrower on low volume roads and wider on higher volume roads. The lane width depends on the assumed maximum vehicle width with an additional space to allow for lateral motion of the vehicle.

The maximum truck width had been 96 inches (2.438 m) in the Code of Federal Regulations of 1956 which matches with the width of eight-foot for shipping containers. This had been increased to 102 inches (2.591 m) in 1976 which explicitly states to be read as the slightly larger metric 2.6 metres (102.36 in) width respecting international harmonization.[12] The same applies to standards in Europe which had increased the allowable size of road vehicles with a current maximum of 2.55 metres (100.39 in) for most trucks and allowing 2.6 metres (102.36 in) for refrigerator trucks. The minimum extra space had been 0.20 metres (7.87 in) and it is currently assumed to be at least 0.25 metres (9.84 in) on each side. For roads with a lower amount of traffic it is allowed to build the second or third lane in the same direction to an assumed lower width for cars like 1.75 metres (68.90 in), however this is not recommended as a design principle for new roads as changes in the amount of traffic could make for unnecessarily increased risks in the future.

The Interstate Highway standards for the U.S. Interstate Highway System uses a 12-foot (3.7 m) standard for lane width, while narrower lanes are used on lower classification roads. In Europe, as laws and road width vary by country, the minimum widths of lanes is generally between 2.5 to 3.25 metres (8.2 to 10.7 ft).[13] The federal Bundesstraße interurban network in Germany defines a minimum of 3.5 metres (11 ft 6 in) for each lane for the smallest two lane roads with an additional 0.25 metres (9.84 in) on the outer sides and shoulders being at least 1.5 metres (59.06 in) on each side. A modern Autobahn divided highway will have two lanes per direction which are 3.75 metres (12 ft 4 in) wide with an additional clearance of 0.50 metres (19.69 in) on each side, while three lanes per direction are set at 3.75 metres (12 ft 4 in) for the rightmost lane and 3.5 metres (11 ft 6 in) for the other lanes. Urban access roads and roads in low-density areas may have lanes as small as 2.75 metres (9 ft 0 in) in width per lane with shoulders being at least 1 metre (3 ft 3 in) wide.[14]

Main article: Road surface marking A typical rural American freeway (Interstate 5 in the Central Valley of California). Notice the yellow line on the left, the dashed white line in the middle, and the solid white line on the right. Also note the rumble strip to the left of the yellow line.

Painted lane markings vary widely from country to country. In the United States, Canada, Mexico, Honduras, Puerto Rico, Virgin Islands and Norway, yellow lines separate traffic going opposite directions and white separates lanes of traffic traveling the same direction, but such is not the case in many European countries.

Lane markings are mostly lines painted on the road by a road marking machine, which can adjust the marking widths according to the lane type.[15]

Traffic reports in California often refer to accidents being "in the number X lane." The California Department of Transportation (Caltrans) assigns the numbers from left to right.[16] The far left passing lane is the number 1 lane. The number of the slow lane (closest to freeway onramps/offramps) depends on the total number of lanes, and could be anywhere from 2 to 8.

For much of human history, roads did not need lane markings because most people walked or rode horses at relatively slow speeds. Another reason for not using lane markings is that they are expensive to maintain.

When automobiles, trucks, and buses came into widespread use during the first two decades of the 20th century, head-on collisions became more common.

Without the guidance provided by lane markings, drivers in the early days often erred in favor of keeping closer to the middle of the road, rather than risk going off-road into ditches or trees[citation needed]. This practice often left inadequate room for opposing traffic.

The history of lane markings is connected to the mass automobile construction in Detroit. It resulted in the formation of the first Road Commission of Wayne County, Michigan in 1906 which was trying to make roads safer (Henry Ford served on the board in the first year).[17] The commission would order the construction of the first concrete road in 1909 (the Woodard Avenue in Detroit) and it conceived the centerline for highways in 1911. Hence the chairmen of the Road Commission, Edward N. Hines is widely credited as the inventor of line markings.[18]

The introduction as a common standard is connected to June McCarroll, a physician in Indio, California who started experimenting with painting lines on roads in 1917 after she was run off a highway by a truck driver. In November 1924, after years of lobbying by Dr. McCarroll and her allies, California officially adopted a policy of painting lines on its highways. A portion of Interstate 10 near Indio has been named the Dr. June McCarroll Memorial Freeway in her honor.

black center line on an Autobahn in Germany (late 1930s)

The first lane markings in Europe were painted at an accident hotspot in the small town of Sutton Coldfield near Birmingham, England in 1921. The success of this experiment made its way to other hotspots and later standardization of white paint for line markings in Great Britain.[19]

The first lane markings in Germany were used in Berlin in 1925 using white paint for line markings and road edge markings. When the standard for the new autobahn network was conceived in the 1930s it mandated the usage of black paint for the center line for each carriageway as black was better visible on the bright surface of the concrete roads.

By 1939, lane markings had become so popular that they were officially standardized throughout the United States. The concept of line markings spread throughout the world becoming standard for most roads. Originally the lines were drawn manually with normal paint which would bleach out quickly. After the war, the first machines for line markings were invented[20] and a plastic strip was becoming standard in the 1950s which led to gradually find line markings on all roads.

Main article: Right- and left-hand traffic

Asphalt Companies in Morningside

Paving Services Price A high-speed toll booth on SR 417 near Orlando, Florida, United States. A toll collection area in the United Kingdom. Hong Kong toll booth.

A toll road, also known as a turnpike or tollway, is a public or private road for which a fee (or toll) is assessed for passage. It is a form of road pricing typically implemented to help recoup the cost of road construction and maintenance.

Toll roads have existed in some form since antiquity, with tolls levied on passing travellers on foot, wagon or horseback; but their prominence increased with the rise of the automobile,[citation needed] and many modern tollways charge fees for motor vehicles exclusively. The amount of the toll usually varies by vehicle type, weight, or number of axles, with freight trucks often charged higher rates than cars.

Tolls are often collected at toll booths, toll houses, plazas, stations, bars, or gates. Some toll collection points are unmanned and the user deposits money in a machine which opens the gate once the correct toll has been paid. To cut costs and minimise time delay many tolls today are collected by some form of automatic or electronic toll collection equipment which communicates electronically with a toll payer's transponder. Some electronic toll roads also maintain a system of toll booths so people without transponders can still pay the toll, but many newer roads now use automatic number plate recognition to charge drivers who use the road without a transponder, and some older toll roads are being upgraded with such systems.

Criticisms of toll roads include the time taken to stop and pay the toll, and the cost of the toll booth operators—up to about one third of revenue in some cases. Automated toll paying systems help minimise both of these. Others object to paying "twice" for the same road: in fuel taxes and with tolls.

In addition to toll roads, toll bridges and toll tunnels are also used by public authorities to generate funds to repay the cost of building the structures. Some tolls are set aside to pay for future maintenance or enhancement of infrastructure, or are applied as a general fund by local governments, not being earmarked for transport facilities. This is sometimes limited or prohibited by central government legislation. Also road congestion pricing schemes have been implemented in a limited number of urban areas as a transportation demand management tool to try to reduce traffic congestion and air pollution.[1]

A table of tolls in pre-decimal currency for the College Road, Dulwich, London SE21 tollgate.

Toll roads have existed for at least the last 2,700 years, as tolls had to be paid by travellers using the Susa–Babylon highway under the regime of Ashurbanipal, who reigned in the 7th century BC.[2] Aristotle and Pliny refer to tolls in Arabia and other parts of Asia. In India, before the 4th century BC, the Arthashastra notes the use of tolls. Germanic tribes charged tolls to travellers across mountain passes.

A 14th-century example (though not for a road) is Castle Loevestein in the Netherlands, which was built at a strategic point where two rivers meet. River tolls were charged on boats sailing along the river. The Øresund in Scandinavia was once subject to a toll to the Danish Monarch, which once provided a sizable portion of the king's revenue.

Many modern European roads were originally constructed as toll roads in order to recoup the costs of construction, maintenance and as a source of tax money that is paid primarily by someone other than the local residents. In 14th-century England, some of the most heavily used roads were repaired with money raised from tolls by pavage grants. Widespread toll roads sometimes restricted traffic so much, by their high tolls, that they interfered with trade and cheap transportation needed to alleviate local famines or shortages.[3]

Tolls were used in the Holy Roman Empire in the 14th and 15th centuries.

Industrialisation in Europe needed major improvements to the transport infrastructure which included many new or substantially improved roads, financed from tolls. The A5 road in Britain was built to provide a robust transport link between Britain and Ireland and had a toll house every few miles.

In the 20th century, road tolls were introduced in Europe to finance the construction of motorway networks and specific transport infrastructure such as bridges and tunnels. Italy was the first European country to charge motorway tolls, on a 50 km motorway section near Milan in 1924. It was followed by Greece, which made users pay for the network of motorways around and between its cities in 1927. Later in the 1950s and 1960s, France, Spain and Portugal started to build motorways largely with the aid of concessions, allowing rapid development of this infrastructure without massive State debts. Since then, road tolls have been introduced in the majority of the EU Member States.[4]

In the United States, prior to the introduction of the Interstate Highway System and the large federal grants supplied to states to build it, many states constructed their first controlled-access highways by floating bonds backed by toll revenues. Starting with the Pennsylvania Turnpike in 1940, and followed by similar roads in New Jersey (Garden State Parkway (1946) and New Jersey Turnpike, 1952), New York (New York State Thruway, 1954), Massachusetts (Massachusetts Turnpike, 1957), and others, numerous states throughout the 1950s established major toll roads. With the establishment of the Interstate Highway System in the late 1950s, toll road construction in the U.S. slowed down considerably, as the federal government now provided the bulk of funding to construct new freeways, and regulations required that such Interstate highways be free from tolls. Many older toll roads were added to the Interstate System under a grandfather clause that allowed tolls to continue to be collected on toll roads that predated the system. Some of these such as the Connecticut Turnpike and the Richmond–Petersburg Turnpike later removed their tolls when the initial bonds were paid off. Many states, however, have maintained the tolling of these roads, however, as a consistent source of revenue.

As the Interstate Highway System approached completion during the 1980s, states began constructing toll roads again to provide new controlled-access highways which were not part of the original interstate system funding. Houston's outer beltway of interconnected toll roads began in 1983, and many states followed over the last two decades of the 20th century adding new toll roads, including the tollway system around Orlando, Florida, Colorado's E-470, and Georgia State Route 400.

London, in an effort to reduce traffic within the city, instituted the London congestion charge in 2003, effectively making all roads within the city tolled.

In the United States, as states looked for ways to construct new freeways without federal funding again, to raise revenue for continued road maintenance, and to control congestion, new toll road construction saw significant increases during the first two decades of the 21st century. Spurred on by two innovations, the electronic toll collection system, and the advent of high occupancy and express lane tolls, many areas of the U.S saw large road building projects in major urban areas. Electronic toll collection, first introduced in the 1980s, reduces operating costs by removing toll collectors from roads. Tolled express lanes, by which certain lanes of a freeway are designated "toll only", increases revenue by allowing a free-to-use highway collect revenue by allowing drivers to bypass traffic jams by paying a toll. The E-ZPass system, compatible with many state systems, is the largest ETC system in the U.S., and is used for both fully tolled highways and tolled express lanes. Maryland Route 200 and the Triangle Expressway in North Carolina were the first toll roads built without toll booths, with drivers charged via ETC or by optical license plate recognition and are billed by mail.

19th-century toll booth in Brooklyn, New York Toll bar in Romania, 1877 Plaque commemorating the suppression of toll on a York bridge in 1914. Main article: Toll roads in Great Britain

Turnpike trusts were established in England and Wales from about 1706 in response to the need for better roads than the few and poorly-maintained tracks then available. Turnpike trusts were set up by individual Acts of Parliament, with powers to collect road tolls to repay loans for building, improving, and maintaining the principal roads in Britain. At their peak, in the 1830s, over 1,000 trusts[5] administered around 30,000 miles (48,000 km) of turnpike road in England and Wales, taking tolls at almost 8,000 toll-gates.[6] The trusts were ultimately responsible for the maintenance and improvement of most of the main roads in England and Wales, which were used to distribute agricultural and industrial goods economically. The tolls were a source of revenue for road building and maintenance, paid for by road users and not from general taxation. The turnpike trusts were gradually abolished from the 1870s. Most trusts improved existing roads, but some new roads, usually only short stretches, were also built. Thomas Telford's Holyhead road followed Watling Street from London but was exceptional in creating a largely new route beyond Shrewsbury, and especially beyond Llangollen. Built in the early 19th century, with many toll booths along its length, most of it is now the A5. In the modern day, one major toll road is the M6 Toll, relieving traffic congestion on the M6 in Birmingham. A few notable bridges and tunnels continue as toll roads including the Severn Bridge, the Dartford Crossing and Mersey Gateway bridge.

Some cities in Canada had toll roads in the 19th century. Roads radiating from Toronto required users to pay at toll gates along the street (Yonge Street, Bloor Street, Davenport Road, Kingston Road)[7] and disappeared after 1895.[8]

19th-century plank roads were usually operated as toll roads. One of the first U.S. motor roads, the Long Island Motor Parkway (which opened on October 10, 1908) was built by William Kissam Vanderbilt II, the great-grandson of Cornelius Vanderbilt. The road was closed in 1938 when it was taken over by the state of New York in lieu of back taxes.[9][10]

Main article: Road pricing

Road tolls were levied traditionally for a specific access (e.g. city) or for a specific infrastructure (e.g. roads, bridges). These concepts were widely used until the last century. However, the evolution in technology made it possible to implement road tolling policies based on different concepts. The different charging concepts are designed to suit different requirements regarding purpose of the charge, charging policy, the network to the charge, tariff class differentiation etc.:[11]

Time Based Charges and Access Fees: In a time-based charging regime, a road user has to pay for a given period of time in which they may use the associated infrastructure. For the practically identical access fees, the user pays for the access to a restricted zone for a period or several days.

Motorway and other Infrastructure Tolling: The term tolling is used for charging a well-defined special and comparatively costly infrastructure, like a bridge, a tunnel, a mountain pass, a motorway concession or the whole motorway network of a country. Classically a toll is due when a vehicle passes a tolling station, be it a manual barrier-controlled toll plaza or a free-flow multi-lane station.

Distance or Area Charging: In a distance or area charging system concept, vehicles are charged per total distance driven in a defined area.

Some toll roads charge a toll in only one direction. Examples include the Sydney Harbour Bridge, Sydney Harbour Tunnel and Eastern Distributor (these all charge tolls city-bound) in Australia, the Severn Bridges where the M4 and M48 in Great Britain crosses the River Severn, in the United States, crossings between Pennsylvania and New Jersey operated by Delaware River Port Authority and crossings between New Jersey and New York operated by Port Authority of New York and New Jersey.This technique is practical where the detour to avoid the toll is large or the toll differences are small.


Balintawak toll plaza of the North Luzon Expressway in Caloocan, Philippines. The toll barrier has both electronic toll collection and cash payment in the same barrier, before a new toll plaza was added. Tipo toll plaza in Subic–Clark–Tarlac Expressway, Hermosa, Bataan The open road tolling lanes at the West 163rd Street toll plaza, on the Tri-State Tollway near Markham, Illinois, United States


Overhead cameras and reader attach to gantry on Highway 407 in Ontario. See also: Electronic toll collection

Traditionally tolls were paid by hand at a toll gate. Although payments may still be made in cash, it is more common now to pay by credit card, by pre-paid card,[citation needed] or by an electronic toll collection system. In some places, payment is made using stickers which are affixed to the windscreen.

Three systems of toll roads exist: open (with mainline barrier toll plazas); closed (with entry/exit tolls) and open road (no toll booths, only electronic toll collection gantries at entrances and exits, or at strategic locations on the mainline of the road). Modern toll roads often use a combination of the three, with various entry and exit tolls supplemented by occasional mainline tolls: for example the Pennsylvania Turnpike and the New York State Thruway implement both systems in different sections.

On an open toll system, all vehicles stop at various locations along the highway to pay a toll. (Not to be confused with "open road tolling", where no vehicles stop to pay toll.) While this may save money from the lack of need to construct toll booths at every exit, it can cause traffic congestion while traffic queues at the mainline toll plazas (toll barriers). It is also possible for motorists to enter an 'open toll road' after one toll barrier and exit before the next one, thus travelling on the toll road toll-free. Most open toll roads have ramp tolls or partial access junctions to prevent this practice, known in the U.S. as "shunpiking".

With a closed system, vehicles collect a ticket when entering the highway. In some cases, the ticket displays the toll to be paid on exit. Upon exit, the driver must pay the amount listed for the given exit. Should the ticket be lost, a driver must typically pay the maximum amount possible for travel on that highway. Short toll roads with no intermediate entries or exits may have only one toll plaza at one end, with motorists traveling in either direction paying a flat fee either when they enter or when they exit the toll road. In a variant of the closed toll system, mainline barriers are present at the two endpoints of the toll road, and each interchange has a ramp toll that is paid upon exit or entry. In this case, a motorist pays a flat fee at the ramp toll and another flat fee at the end of the toll road; no ticket is necessary. In addition, with most systems, motorists may pay tolls only with cash and/or change; debit and credit cards are not accepted. However, some toll roads may have travel plazas with ATMs so motorists can stop and withdraw cash for the tolls.

The toll is calculated by the distance travelled on the toll road or the specific exit chosen. In the United States, for instance, the Kansas Turnpike, Ohio Turnpike, Pennsylvania Turnpike, New Jersey Turnpike, most of the Indiana Toll Road, New York State Thruway, and Florida's Turnpike currently implement closed systems.

The Union Toll Plaza on the Garden State Parkway was the first ever to use an automated toll collection machine. A plaque commemorating the event includes the first quarter collected at its toll booths.[12]

The first major deployment of an RFID electronic toll collection system in the United States was on the Dallas North Tollway in 1989 by Amtech (see TollTag). The Amtech RFID technology used on the Dallas North Tollway was originally developed at Sandia Labs for use in tagging and tracking livestock. In the same year, the Telepass active transponder RFID system was introduced across Italy.

Highway 407 in the province of Ontario, Canada, has no toll booths, and instead reads a transponder mounted on the windshields of each vehicle using the road (the rear licence plates of vehicles lacking a transponder are photographed when they enter and exit the highway). This made the highway the first all-automated toll highway in the world. A bill is mailed monthly for usage of the 407. Lower charges are levied on frequent 407 users who carry electronic transponders in their vehicles. The approach has not been without controversy: In 2003 the 407 ETR settled[13] a class action with a refund to users.

Throughout most of the East Coast of the United States, E-ZPass (operated under the brand I-Pass in Illinois) is accepted on almost all toll roads. Similar systems include SunPass in Florida, FasTrak in California, Good to Go in Washington State, and ExpressToll in Colorado. The systems use a small radio transponder mounted in or on a customer's vehicle to deduct toll fares from a pre-paid account as the vehicle passes through the toll barrier. This reduces manpower at toll booths and increases traffic flow and fuel efficiency by reducing the need for complete stops to pay tolls at these locations.

E-ZPass lanes at a New Jersey Turnpike (I-95) Toll Gate for Exit 8A in Monroe Township, New Jersey, United States

By designing a tollgate specifically for electronic collection, it is possible to carry out open-road tolling, where the customer does not need to slow at all when passing through the tollgate. The U.S. state of Texas is testing a system on a stretch of Texas 121 that has no toll booths. Drivers without a TollTag have their license plate photographed automatically and the registered owner will receive a monthly bill, at a higher rate than those vehicles with TollTags.[14]

The first all-electric toll road in the eastern United States, the InterCounty Connector (Maryland Route 200) was partially opened to traffic in February 2011,[15] and the final segment was completed in November 2014.[16] The first section of another all-electronic toll road, the Triangle Expressway, opened at the beginning of 2012 in North Carolina.[17]

Some toll roads are managed under such systems as the Build-Operate-Transfer (BOT) system. Private companies build the roads and are given a limited franchise. Ownership is transferred to the government when the franchise expires. This type of arrangement is prevalent in Australia, Canada, Hong Kong, India, South Korea, Japan and the Philippines. The BOT system is a fairly new concept that is gaining ground in the United States, with California, Delaware, Florida, Illinois, Indiana, Mississippi,[18] Texas, and Virginia already building and operating toll roads under this scheme. Pennsylvania, Massachusetts, New Jersey, and Tennessee are also considering the BOT methodology for future highway projects.

The more traditional means of managing toll roads in the United States is through semi-autonomous public authorities. Kansas, Maryland, Massachusetts, New Hampshire, New Jersey, New York, North Carolina, Ohio, Oklahoma, Pennsylvania, and West Virginia manage their toll roads in this manner. While most of the toll roads in California, Delaware, Florida, Texas, and Virginia are operating under the BOT arrangement, a few of the older toll roads in these states are still operated by public authorities.

In France, all toll roads are operated by private companies, and the government takes a part of their profit.[citation needed]

Toll roads have been criticized as being inefficient in various ways:[19]

  1. They require vehicles to stop or slow down (except open road tolling); manual toll collection wastes time and raises vehicle operating costs.
  2. Collection costs can absorb up to one-third of revenues, and revenue theft is considered to be comparatively easy.
  3. Where the tolled roads are less congested than the parallel "free" roads, the traffic diversion resulting from the tolls increases congestion on the road system and reduces its usefulness.
  4. By tracking the vehicle locations, their drivers are subject to an effectual restriction of their freedom of movement and freedom from excessive surveillance.

A number of additional criticisms are also directed at toll roads in general:

  1. Toll roads are a form of regressive taxation; that is, compared to conventional taxes for funding roads, they benefit wealthier citizens more than poor citizens.[20][21]
  2. If toll roads are owned or managed by private entities, the citizens may lose money overall compared to conventional public funding because the private owners/operators of the toll system will naturally seek to profit from the roads.[22]
  3. The managing entities, whether public or private, may not correctly account for the overall social costs, particularly to the poor, when setting pricing and thus may hurt the neediest segments of society.[23]

Diverging diamond interchange

Driveway Pavers Near Me Standard design on a wide median.[1] Stylized depiction of the design in Grand Haven, Michigan, at US 31 and Robbins Road (north to the right), showing the additional area necessary to make a turn on a narrow median.[1] 43°2′40.18″N 86°13′12.57″W / 43.0444944°N 86.2201583°W / 43.0444944; -86.2201583 (US 31 at Robbins Road, Grand Haven, Michigan)

A Michigan left is an at-grade intersection design which replaces each left turn with a U-turn and a right turn. The design was given the name due to its frequent use along roads and highways in the U.S. state of Michigan since the late 1960s.[2] In other contexts, the intersection is called a median U-turn crossover or median U-turn.[1][3] The design is also sometimes referred to as a boulevard left,[4] a boulevard turnaround,[5] a Michigan loon[6] or a "ThrU Turn" intersection.[7][8]

Two versions of signs posted along an intersecting road or street at an intersection. Top: most commonly used; Bottom: lesser-used variant.

The design occurs at intersections where at least one road is a divided highway or boulevard, and left turns onto—and usually from—the divided highway are prohibited. In almost every case, the divided highway is multi-laned in both directions. When on the secondary road, drivers are directed to turn right. Within 1⁄4 mile (400 m), they queue into a designated U-turn (or cross-over) lane in the median.

When traffic clears they complete the U-turn and go back through the intersection. Additionally, the U-turn lane is designed for one-way traffic. Similarly, traffic on the divided highway cannot turn left at an intersection with a cross street. Instead, drivers are instructed to "overshoot" the intersection, go through the U-turn lane, come back to the intersection from the opposite direction, and turn right.

When vehicles enter the cross-over area, unless markings on the ground indicate two turning lanes in the cross-over, drivers form one lane. A cross-over with two lanes is designed at high-volume cross-overs, or when the right lane turns onto an intersecting street. In this case, the right lane is reserved for vehicles completing the design. Most crossovers must be made large enough for semi-trailer trucks to complete the crossover. This large cross-over area often leads to two vehicles incorrectly lining up at a single cross-over.

The maneuver forces the driver to quickly merge into the extreme left lane to complete the turn, usually from a complete stop. The turning vehicle is potentially a hazard and may cause a disruption in the flow of traffic in the left lane.[citation needed]

When the median of a road is too narrow to allow for a standard Michigan left maneuver, a variation can be used which widens the pavement in the opposite direction of travel. This widened pavement is known as a "bulb out"[7] or a "loon" (from the pavement's aerial resemblance to the aquatic bird).[6] Such a design is sometimes referred to as a Michigan loon; in Utah, as a ThrU Turn, which is a portmanteau combining the terms "Through" (the intersection, followed by a) "U Turn".[7]

In 2013, Michigan lefts were installed in Alabama for the first time, in several locations along heavily traveled U.S. Route 280 in metro Birmingham.[9]

Tucson, Arizona, began introducing Michigan lefts in 2013, at Ina/Oracle and Grant/Oracle. Their reception has been mixed.[10]

The design is relatively common in New Orleans, Louisiana, and its suburb Metairie, where city boulevards may be split by streetcar tracks,[11] and suburban thoroughfares are often split by drainage canals.[12] Some intersections using this design are signed similarly to those in Michigan, but with more descriptive text,[13] however in some cases the only signage is "No Left Turn" and drivers are left to figure it out for themselves.[14]

Since the redevelopment of the intersection between University Boulevard (MD 193) and Colesville Road (US 29) in Silver Spring, Maryland, a Michigan left has been used to increase efficiency of traffic through an otherwise underdeveloped and congested intersection. Due to its proximity to the Capital Beltway, heavy traffic is handled more safely and efficiently.[citation needed]

A typical Michigan left layout: Telegraph Road (US 24) at Warren Road near Detroit, showing Michigan lefts 42°20′28″N 83°16′23″W / 42.341°N 83.273°W / 42.341; -83.273 (US 24 (Telegraph Road) at Warren Road, Dearborn, Michigan)

The Michigan Department of Transportation first used the modern design at the intersection of 8 Mile Road (M-102) and Livernois Avenue[15] (42°26′46″N 83°08′28″W / 42.4461°N 83.141°W / 42.4461; -83.141 (M-102 (8 Mile Road) at Livernois Avenue))[16] in Detroit in the early 1960s. The increase in traffic flow and reduction in accidents was so dramatic (a 30–60% decrease[17]) that over 700 similar intersections have been deployed throughout the state since then.[18]

North Carolina has been implementing Michigan lefts along US 17 in the southeastern part of the state, outside Wilmington.[18] In 2015, a Michigan left was constructed at the intersection of Poplar Tent Road and Derita Road in the Charlotte suburb of Concord.[citation needed]

Columbus, Ohio introduced a Michigan left at the intersection of SR 161 and Strawberry Farms Boulevard in 2012. Reception has been mixed with several accidents occurring per year.[citation needed]

At least two Michigan lefts have existed in Texas. One was located at the intersection of Fondren Road and Bellaire Boulevard in Houston from the 1980s through 2007, when it was replaced with conventional left-turn lanes. Another was built in mid-2010 in Plano at the intersection of Preston Road and Legacy Drive.[19] In January 2014, the city announced plans to revert the turn to a traditional intersection as a result of drivers' confusion.[citation needed] A section of State Highway 71 east of Austin-Bergstrom International Airport at FM 973 in Austin, Texas did have a signalized Michigan U-turn which was constructed in 2014—this was a temporary fix until the SH71 tollway over SH130 (including the re-routing of FM973) was completed in early 2016.[citation needed] There are multiple Michigan left turns currently being used along US 281 north of Loop 1604 in San Antonio. These were adopted as a short-term solution for traffic issues as development expanded north, but will likely be phased out as US 281 is elevated.[citation needed]

The city of Draper, Utah, a suburb of Salt Lake City, announced in 2011 that it would be building Utah's first "ThrU Turn" at the intersection of 12300 South and State Street, just off Interstate 15 through Salt Lake County. Construction began in summer 2011 and was completed in fall 2011.[7][20][21] Other similar intersections were implemented in South Jordan[22] and Layton.[23]

In Australia, where traffic drives on the left, the Victorian state government introduced the "P-turn", similar to the Michigan left, at one intersection in 2009. This requires right-turning vehicles to turn left then make a U-turn. As of May 2015, the intersection in the southeastern Melbourne suburb of Frankston remains the only one of its kind in the state, and local residents have called for its removal.[24]

A similar style P-turn is used in the junction of the A4 Great West Road and A3002 Boston Manor Road in Brentford, England.

The design has been proposed in Toronto, Ontario, to relieve motorists who wish to make a left-turn on roadways which will contain a proposed streetcar line by the Transit City project.

In Ottawa, Ontario, a Michigan left exists to proceed from Riverside Drive, northbound, to Bank Street northbound.

Another Michigan left exists in Windsor, Ontario, on Huron Church Road, just north of the E.C. Row Expressway, where a narrow-median variant put in place years ago is now seldom used due to the realignment of the expressway in conjunction with the construction of the Herb Gray Parkway.

In Mexico, Guadalajara has a grade-separated variation of this setup in the intersection of Mariano Otero Avenue and Manuel Gómez Morín Beltway (20°37′50″N 103°26′06″W / 20.630666°N 103.434981°W / 20.630666; -103.434981).[25] Traffic flowing through Mariano Otero is routed through an overpass above the beltway, with two access roads allowing right turn on all four possible directions; the U-turns, meanwhile, are built underneath the beltway and allow the left turn from Mariano Otero avenue to the beltway. U-turn intersections are very common throughout Mexico, particularly in Mexico City.

Brazil is also known to utilize this setup especially in São Paulo.

This is the design at some busy junctions in Hong Kong. In Hong Kong Island examples include the junction of Fleming Road and Harbour Road in Wan Chai North, and the junction of Hennessey Road and Canal Road Flyover in Wong Nai Chung. In Kowloon this design exists between Cheong Wan Road and Hong Chong Road/Salisbury Road.

The capital city of Angola, Luanda, makes widespread use of a simplified variant of this type of intersection on its two- and three-lane, median-separated throughways instead of using traffic lights. Larger junctions use this intersection type instead of much more costly grade-separated interchanges.

This type of intersection configuration, as with any engineered solution to a traffic problem, carries with it certain advantages and disadvantages and has been subject to several studies.

Studies[by whom?][when?] have shown a major reduction in left-turn collisions and a minor reduction in merging and diverging collisions, due to the shifting of left turns outside the main intersection[clarification needed].[1] In addition, it reduces the number of different traffic light phases, significantly increasing traffic flow. Because separate phases are no longer needed for left turns, this increases green time for through traffic. The effect on turning traffic is mixed.[1] Consequently, the timing of traffic signals along a highway featuring the design is made easier by the elimination of left-turn phases both on that highway and along intersecting roadways contributing to the reduction of travel times and the increased capacity of those roadways.[1]

It has been shown to enhance safety to pedestrians crossing either street at an intersection featuring the design since they only encounter through traffic and vehicles making right turns. The left-turning movement, having been eliminated, removes one source of potential vehicle-pedestrian conflict.[1] One minor disadvantage of the Michigan left is the extra distance required for the motorist to drive. Sometimes the distance to the turnaround is as far away as 1⁄4 mile (400 m) past the intersection. This design leads to each motorist driving an additional 1⁄2 mile (800 m) to make a left turn. It also results in left-turning vehicles having to stop up to three times in the execution of the turn.

Asphalt Contractors Costs