Paving Contractors Woodmead

How Do You Select The Best Driveway or Paving Contractors?

Driveway to a farm Driveway apron and sloped curb to a public street, all under construction

A driveway (also called drive in UK English) Paving Contractors  in Bryanston is a type of private road for local access to one or a small group of structures, and is owned and maintained by an individual or group.

Paver Repair Quotes

Driveways rarely have traffic lights, but some that bear heavy traffic, especially those leading to commercial businesses and parks, do.

Driveways may be decorative in ways that public roads cannot, because of their lighter traffic and the willingness of owners to invest in their construction. Driveways are not resurfaced, snow blown or otherwise maintained by governments. They are generally designed to conform to the architecture of connected houses or other buildings.

Asphalt Surfacing Contractors Price

Some of the materials that can be used for driveways include concrete, decorative brick, cobblestone, block paving, asphalt, gravel, decomposed granite, and surrounded with grass or other ground-cover plants.


Paver Repair Quotes

Driveways are commonly used as paths to private garages, carports, or houses. On large estates, a driveway may be the road that leads to the house from the public road, possibly with a gate in between. Some driveways divide to serve different homeowners. A driveway may also refer to a small apron of pavement in front of a garage with a curb cut in the sidewalk, sometimes too short to accommodate a car.

Paver Repair Price

Often, either by choice or to conform with local regulations, cars are parked in driveways in order to leave streets clear for traffic. Moreover, some jurisdictions prohibit parking or leaving standing any motor vehicle upon any residential lawn area (defined as the property from the front of a residential house, condominium, or cooperative to the street line other than a driveway, walkway, concrete or blacktopped surface parking space).[2] Other examples include the city of Berkeley, California that forbids “any person to park or leave standing, or cause to be parked or left standing any vehicle upon any public street in the City for seventy-two or more consecutive hours.”[3] Other areas may prohibit leaving vehicles on residential streets during certain times (for instance, to accommodate regular street cleaning), necessitating the use of driveways.


Asphalt Surfacing Company Cost Estimate

Residential driveways are also used for such things as garage sales, automobile washing and repair, and recreation, notably (in North America) for basketball practice.

Another form of driveway is a ‘Run-Up’, or short piece of land used usually at the front of the property to park a vehicle on.[citation needed]

Interesting Facts About Paving Contractors in Fourways:

About Paving Contractors in Fourways:

Asphalt Driveway Price Raised sidewalks beside a 2000-year-old paved road, Pompeii, Italy

A sidewalk (American English) or pavement (British English), also known as a footpath or footway, is a path along the side of a road. A sidewalk may accommodate moderate changes in grade (height) and is normally separated from the vehicular section by a curb. There may also be a median strip or road verge (a strip of vegetation, grass or bushes or trees or a combination of these) either between the sidewalk and the roadway or between the sidewalk and the boundary.

In some places, the same term may also be used for a paved path, trail or footpath that is not next to a road, for example, a path through a park.

The term "sidewalk" is usually preferred in most of North America, along with many other countries worldwide that are not members of the Commonwealth of Nations. The term "pavement" is more common in the United Kingdom,[1] as well as parts of the Mid-Atlantic United States such as Philadelphia and New Jersey.[2][3] Many Commonwealth countries use the term "footpath". The professional, civil engineering and legal term for this in North America is "sidewalk" while in the United Kingdom it is "footway".[4]

In the United States, the term sidewalk is used for the pedestrian path beside a road. "Shared use paths" or "multi-use paths" are available for use by both pedestrians and bicyclists.[5] "Walkway" is a more comprehensive term that includes stairs, ramps, passageways, and related structures that facilitate the use of a path as well as the sidewalk.[6]

In the UK, the term "footpath" is mostly used for paths that do not abut a roadway.[7] The term "shared-use path" is used where cyclists are also able to use the same section of path as pedestrians.[8]

East India House, Leadenhall Street, London, 1766. The sidewalk is separated from the main street by six bollards in front of the building.

There is evidence that sidewalks were built in ancient times. It was claimed that the Greek city of Corinth was paved by the 4th-century, and the Romans were particularly prolific sidewalk builders – they called them semitas.[9]

However, by the Middle Ages, narrow roads had reverted to being simultaneously used by pedestrians and wagons without any formal separation between the two categories. Early attempts at ensuring the adequate maintenance of foot-ways or sidewalks were often made, such as the 1623 Act for Colchester, although they were generally not very effective.[10]

Following the Great Fire of London in 1666, attempts were slowly made to bring some order to the sprawling city. In 1671, 'Certain Orders, Rules and Directions Touching the Paving and Cleansing The Streets, Lanes and Common Passages within the City of London' were formulated, calling for all streets to be adequately paved for pedestrians with cobblestones. Purbeck stone was widely used as a durable paving material. Bollards were also installed to protect pedestrians from the traffic in the middle of the road.

A series of Paving Acts from the House of Commons during the 18th century, especially the 1766 Paving & Lighting Act, authorized the City of London Corporation to create foot-ways throughout all the streets of London, to pave them with Purbeck stone (the thoroughfare in the middle was generally cobblestone) and to raise them above the street level with curbs forming the separation.[11] The Corporation was also made responsible for the regular upkeep of the roads, including their cleaning and repair, for which they charged a tax from 1766.[12] By the late 19th-century large and spacious sidewalks were routinely constructed in European capitals, and were associated with urban sophistication.

In the United States, adjoining property owners must in most situations finance all or part of the cost of sidewalk construction. In a legal case in 1917 involving E. L. Stewart, a former member of the Louisiana House of Representatives and a lawyer in Minden in Webster Parish, the Louisiana Supreme Court ruled that owners must pay whether they wish for the sidewalk to be constructed or not.[13]

Pedestrians walking on the pavement (sidewalk) in London.

Sidewalks play an important role in transportation, as they provide a safe path for people to walk along that is separated from the motorized traffic. They aid road safety by minimizing interaction between pedestrians and motorized traffic. Sidewalks are normally in pairs, one on each side of the road, with the center section of the road for motorized vehicles.

In rural roads, sidewalks may not be present as the amount of traffic (pedestrian or motorized) may not be enough to justify separating the two. In suburban and urban areas, sidewalks are more common. In town and city centers (known as downtown in North America) the amount of pedestrian traffic can exceed motorized traffic, and in this case the sidewalks can occupy more than half of the width of the road, or the whole road can be reserved for pedestrians, see Pedestrian zone.

Sidewalks may have a small effect on reducing vehicle miles traveled and carbon dioxide emissions. A study of sidewalk and transit investments in Seattle neighborhoods found vehicle travel reductions of 6 to 8% and CO2 emission reductions of 1.3 to 2.2% [14]

Sidewalk with bike path See also: Road traffic safety

Research commissioned for the Florida Department of Transportation, published in 2005, found that, in Florida, the Crash Reduction Factor (used to estimate the expected reduction of crashes during a given period) resulting from the installation of sidewalks averaged 74%.[15] Research at the University of North Carolina for the U.S. Department of Transportation found that the presence or absence of a sidewalk and the speed limit are significant factors in the likelihood of a vehicle/pedestrian crash. Sidewalk presence had a risk ratio of 0.118, which means that the likelihood of a crash on a road with a paved sidewalk was 88.2 percent lower than one without a sidewalk. “This should not be interpreted to mean that installing sidewalks would necessarily reduce the likelihood of pedestrian/motor vehicle crashes by 88.2 percent in all situations. However, the presence of a sidewalk clearly has a strong beneficial effect of reducing the risk of a ‘walking along roadway’ pedestrian/motor vehicle crash.” The study does not count crashes that happen when walking across a roadway. The speed limit risk ratio was 1.116, which means that a 16.1-km/h (10-mi/h) increase in the limit yields a factor of (1.116)10 or 3.[16]

The presence or absence of sidewalks was one of three factors that were found to encourage drivers to choose lower, safer speeds.[17]

On the other hand, the implementation of schemes which involve the removal of sidewalks, such as shared space schemes, are reported to deliver a dramatic drop in crashes and congestion too, which indicates that a number of other factors, such as the local speed environment, also play an important role in whether sidewalks are necessarily the best local solution for pedestrian safety.[18]

In cold weather, black ice is a common problem with unsalted sidewalks. The ice forms a thin transparent surface film which is almost impossible to see, and so results in many slips by pedestrians.

Riding bicycles on sidewalks is discouraged since some research shows it to be more dangerous than riding in the street.[19] Some jurisdictions prohibit sidewalk riding except for children. In addition to the risk of cyclist/pedestrian collisions, cyclists face increase risks from collisions with motor vehicles at street crossings and driveways. Riding in the direction opposite to traffic in the adjacent lane is especially risky.[20]

Since residents of neighborhoods with sidewalks are more likely to walk, they tend to have lower rates of cardiovascular disease, obesity, and other health issues related to sedentary lifestyles.[21] Also, children who walk to school have been shown to have better concentration.[22]

Native Americans busking at Orchard Road, Singapore

Some sidewalks may be used as social spaces with sidewalk cafes, markets, or busking musicians, as well as for parking for a variety of vehicles including cars, motorbikes and bicycles.

Contemporary sidewalks are most often made of concrete in the United States and Canada, while tarmac, asphalt, brick, stone, slab and (increasingly) rubber are more common in Europe.[23] Different materials are more or less friendly environmentally: pumice-based trass, for example, when used as an extender is less energy-intensive than Portland cement concrete or petroleum-based materials such as asphalt or tar-penetration macadam). Multi-use paths alongside roads are sometimes made of materials that are softer than concrete, such as asphalt.

In the 19th century and early 20th century, sidewalks of wood were common in some North American locations. They may still be found at historic beach locations and in conservation areas to protect the land beneath and around, called boardwalks.

Brick sidewalks are found in some urban areas, usually for aesthetic purposes. Brick sidewalk construction usually involves the usage of a mechanical vibrator to lock the bricks in place after they have been laid (and/or to prepare the soil before laying). Although this might also be done by other tools (as regular hammers and heavy rolls), a vibrator is often used to speed up the process.

Stone slabs called flagstones or flags are sometimes used where an attractive appearance is required, as in historic town centers. In other places, pre-cast concrete slabs (called paving slabs or, less correctly, paving stones) are used. These may be colored or textured to resemble stone.

Freshly laid concrete sidewalk, with horizontal strain-relief grooves faintly visible

In the United States and Canada, the most common type of sidewalk consists of a poured concrete ribbon, examples of which from as early as the 1860s can be found in good repair in San Francisco, and stamped with the name of the contractor and date of installation.[citation needed] When quantities of Portland cement were first imported to the United States in the 1880s, its principal use was in the construction of sidewalks.[24]

Today, most sidewalk ribbons are constructed with cross-lying strain-relief grooves placed or sawn at regular intervals typically 5 feet (1.5 m) apart. This partitioning, an improvement over the continuous slab, was patented in 1924 by Arthur Wesley Hall and William Alexander McVay, who wished to minimize damage to the concrete from the effects of tectonic and temperature fluctuations, both of which can crack longer segments.[25] The technique is not perfect, as freeze-thaw cycles (in cold-weather regions) and tree root growth can eventually result in damage which requires repair.

In highly variable climates which undergo multiple freeze-thaw cycles, the concrete blocks will be separated by expansion joints to allow for thermal expansion without breakage. The use of expansion joints in sidewalks may not be necessary, as the concrete will shrink while setting.[26]

In the United Kingdom, Australia and France suburban sidewalks are most commonly constructed of tarmac. In urban or inner-city areas sidewalks are most commonly constructed of slabs, stone, or brick depending upon the surrounding street architecture and furniture.

Paving Contractors in Fourways

Paver Repair Quotes Moderate to severe Fatigue cracking.

Crocodile cracking, also called alligator cracking and perhaps misleadingly fatigue cracking, is a common type of distress in asphalt pavement. The following is more closely related to fatigue cracking which is characterized by interconnecting or interlaced cracking in the asphalt layer resembling the hide of a crocodile.[1] Cell sizes can vary in size up to 11.80 inches (300 mm) across, but are typically less than 5.90 inches (150 mm) across. Fatigue cracking is generally a loading failure,[1] but numerous factors can contribute to it. It is often a sign of sub-base failure, poor drainage, or repeated over-loadings. It is important to prevent fatigue cracking, and repair as soon as possible, as advanced cases can be very costly to repair and can lead to formation of potholes or premature pavement failure.

It is usually studied under the transportation section of civil engineering.

Fatigue cracking is an asphalt pavement distress most often instigated by failure of the surface due to traffic loading. However, fatigue cracking can be greatly influenced by environmental and other effects while traffic loading remains the direct cause. Frequently, overloading happens because the base or subbase inadequately support the surface layer and subsequently cannot handle loads that it would normally endure.[2] There are many ways that the subbase or base can be weakened.

Poor drainage in the road bed is a frequent cause of this degradation of the base or subgrade.[1] A heavy spring thaw, similarly to poor drainage, can weaken the base course, leading to fatigue cracking.[1]

Stripping or raveling is another possible cause of fatigue cracking. Stripping occurs when poor adhesion between asphalt and aggregate allows the aggregate at the surface to dislodge. If left uncorrected, this reduces the thickness of the pavement, reducing the affected portion's ability to carry its designed loading.[1] This can cause fatigue cracking to develop rapidly, as overloading will happen with loads of less magnitude or frequency.

Edge cracking is the formation of crescent-shaped cracks near the edge of a road.[3] It is caused by lack of support of the road edge, sometimes due to poorly drained or weak shoulders. If left untreated, additional cracks will form until it resembles fatigue cracking.[3] Like wheel-path fatigue cracking, poor drainage is a main cause of edge cracking, as it weakens the base, which hastens the deterioration of the pavement.[4] Water ponding (a buildup of water which can also be called puddling) happens more frequently near the edge than in the center of the road path, as roads are usually sloped to prevent in-lane ponding. This leads to excess moisture in the shoulders and subbase at the road edge. Edge cracking differs from fatigue cracking in that the cracks form from the top down, where fatigue cracks usually start at the bottom and propagate to the surface.

Fatigue cracking manifests itself initially as longitudinal cracking (cracks along the direction of the flow of traffic) in the top layer of the asphalt.[5] These cracks are initially thin and sparsely distributed. If further deterioration is allowed, these longitudinal cracks are connected by transverse cracks to form sharp sided, prismatic pieces. This interlaced cracking pattern resembles the scales on the back of a crocodile or alligator, hence the nickname, crocodile cracking.

More severe cases involve pumping of fines, spalling, and loose pieces of pavement. The most severe cases of fatigue cracking often occur with other pavement distresses, but are exemplified by: potholes,[1] large cracks(3/8" or larger), and severely spalled edges.[4]

There are many different ways to measure fatigue cracking, but in general a pavement distress manual or index will be used. For example, the Pavement Condition Index is widely used to quantify the overall level of distress and condition of a section of road. Measurement of fatigue cracking specifically (and pavement distress in general) is necessary to determine the overall condition of a road, and for determination of a time-line for rehabilitation and/or repair. There are many other rating systems, and many rating systems currently in use are based on the AASHO Road Test.

There are two important criteria to take into account when measuring fatigue cracking. The first is the extent of the cracking. This is the amount of road surface area which is affected by this pavement distress. The second criterion is the severity of the cracking.[6] Severity, which has been discussed above, refers to how far the cracking has progressed, and is often directly a function of crack width.[6] Severity may be rated numerically, or given a rating from "low" to "severe". The rating may be entered into a pavement management system, which will suggest a priority and method for the repair.

Systems have been developed that detect fatigue cracking and other types of pavement distress automatically.[7] They measure the severity and frequency of alligator cracking on the road-path. One such machine is the road surface profilometer, which is mounted on a vehicle and measures the profile of the road surface while it is moving down the roadway.

Preventing fatigue cracking can be as simple as preventing the common causes. For example, reducing overloading on an asphalt pavement or improving drainage[2] can prevent fatigue cracking in many cases. Prevention primarily depends on designing and constructing the pavement and subbase to support the expected traffic loads, and providing good drainage to keep water out of the subbase.

A good strategy to prevent overloading, which is a main cause of fatigue cracking, is to increase the depth of the asphalt layer. According to certain researchers, pavements that exceed a certain minimum strength or thickness can hypothetically handle infinitely many loads without showing structural defects, including fatigue cracking.[1] These pavements are called perpetual pavements or long-term performance pavements (LTPP).

When repairing pavement affected by fatigue cracking, the main cause of the distress should be determined. However, often the specific cause is fairly difficult to determine, and prevention is therefore correspondingly difficult. Any investigation should involve digging a pit or coring the pavement and subbase to determine the pavement's structural makeup as well as determining whether or not subsurface moisture is a contributing factor.[1] The repair needed also differs based on the severity and extent of the cracking.

In the early stages, sealing cracks with crack sealant limits further deterioration of the subgrade due to moisture penetration. Small areas may be repaired by removal of the affected area, and replacement with new base and asphalt surface.[2] Once the damage has progressed or the affected area is large and extensive, a structural asphalt overlay or complete reconstruction is necessary to ensure structural integrity. Proper repair may include first sealing cracks with crack sealant, installing paving fabric over a tack coat, or milling the damaged asphalt. An overlay of hot mix asphalt is then placed over the completed repair. [2]


Asphalt Driveway Paving Price Standard design on a wide median.[1] Stylized depiction of the design in Grand Haven, Michigan, at US 31 and Robbins Road (north to the right), showing the additional area necessary to make a turn on a narrow median.[1] 43°2′40.18″N 86°13′12.57″W / 43.0444944°N 86.2201583°W / 43.0444944; -86.2201583 (US 31 at Robbins Road, Grand Haven, Michigan)

A Michigan left is an at-grade intersection design which replaces each left turn with a U-turn and a right turn. The design was given the name due to its frequent use along roads and highways in the U.S. state of Michigan since the late 1960s.[2] In other contexts, the intersection is called a median U-turn crossover or median U-turn.[1][3] The design is also sometimes referred to as a boulevard left,[4] a boulevard turnaround,[5] a Michigan loon[6] or a "ThrU Turn" intersection.[7][8]

Two versions of signs posted along an intersecting road or street at an intersection. Top: most commonly used; Bottom: lesser-used variant.

The design occurs at intersections where at least one road is a divided highway or boulevard, and left turns onto—and usually from—the divided highway are prohibited. In almost every case, the divided highway is multi-laned in both directions. When on the secondary road, drivers are directed to turn right. Within 1⁄4 mile (400 m), they queue into a designated U-turn (or cross-over) lane in the median.

When traffic clears they complete the U-turn and go back through the intersection. Additionally, the U-turn lane is designed for one-way traffic. Similarly, traffic on the divided highway cannot turn left at an intersection with a cross street. Instead, drivers are instructed to "overshoot" the intersection, go through the U-turn lane, come back to the intersection from the opposite direction, and turn right.

When vehicles enter the cross-over area, unless markings on the ground indicate two turning lanes in the cross-over, drivers form one lane. A cross-over with two lanes is designed at high-volume cross-overs, or when the right lane turns onto an intersecting street. In this case, the right lane is reserved for vehicles completing the design. Most crossovers must be made large enough for semi-trailer trucks to complete the crossover. This large cross-over area often leads to two vehicles incorrectly lining up at a single cross-over.

The maneuver forces the driver to quickly merge into the extreme left lane to complete the turn, usually from a complete stop. The turning vehicle is potentially a hazard and may cause a disruption in the flow of traffic in the left lane.[citation needed]

When the median of a road is too narrow to allow for a standard Michigan left maneuver, a variation can be used which widens the pavement in the opposite direction of travel. This widened pavement is known as a "bulb out"[7] or a "loon" (from the pavement's aerial resemblance to the aquatic bird).[6] Such a design is sometimes referred to as a Michigan loon; in Utah, as a ThrU Turn, which is a portmanteau combining the terms "Through" (the intersection, followed by a) "U Turn".[7]

In 2013, Michigan lefts were installed in Alabama for the first time, in several locations along heavily traveled U.S. Route 280 in metro Birmingham.[9]

Tucson, Arizona, began introducing Michigan lefts in 2013, at Ina/Oracle and Grant/Oracle. Their reception has been mixed.[10]

The design is relatively common in New Orleans, Louisiana, and its suburb Metairie, where city boulevards may be split by streetcar tracks,[11] and suburban thoroughfares are often split by drainage canals.[12] Some intersections using this design are signed similarly to those in Michigan, but with more descriptive text,[13] however in some cases the only signage is "No Left Turn" and drivers are left to figure it out for themselves.[14]

Since the redevelopment of the intersection between University Boulevard (MD 193) and Colesville Road (US 29) in Silver Spring, Maryland, a Michigan left has been used to increase efficiency of traffic through an otherwise underdeveloped and congested intersection. Due to its proximity to the Capital Beltway, heavy traffic is handled more safely and efficiently.[citation needed]

A typical Michigan left layout: Telegraph Road (US 24) at Warren Road near Detroit, showing Michigan lefts 42°20′28″N 83°16′23″W / 42.341°N 83.273°W / 42.341; -83.273 (US 24 (Telegraph Road) at Warren Road, Dearborn, Michigan)

The Michigan Department of Transportation first used the modern design at the intersection of 8 Mile Road (M-102) and Livernois Avenue[15] (42°26′46″N 83°08′28″W / 42.4461°N 83.141°W / 42.4461; -83.141 (M-102 (8 Mile Road) at Livernois Avenue))[16] in Detroit in the early 1960s. The increase in traffic flow and reduction in accidents was so dramatic (a 30–60% decrease[17]) that over 700 similar intersections have been deployed throughout the state since then.[18]

North Carolina has been implementing Michigan lefts along US 17 in the southeastern part of the state, outside Wilmington.[18] In 2015, a Michigan left was constructed at the intersection of Poplar Tent Road and Derita Road in the Charlotte suburb of Concord.[citation needed]

Columbus, Ohio introduced a Michigan left at the intersection of SR 161 and Strawberry Farms Boulevard in 2012. Reception has been mixed with several accidents occurring per year.[citation needed]

At least two Michigan lefts have existed in Texas. One was located at the intersection of Fondren Road and Bellaire Boulevard in Houston from the 1980s through 2007, when it was replaced with conventional left-turn lanes. Another was built in mid-2010 in Plano at the intersection of Preston Road and Legacy Drive.[19] In January 2014, the city announced plans to revert the turn to a traditional intersection as a result of drivers' confusion.[citation needed] A section of State Highway 71 east of Austin-Bergstrom International Airport at FM 973 in Austin, Texas did have a signalized Michigan U-turn which was constructed in 2014—this was a temporary fix until the SH71 tollway over SH130 (including the re-routing of FM973) was completed in early 2016.[citation needed] There are multiple Michigan left turns currently being used along US 281 north of Loop 1604 in San Antonio. These were adopted as a short-term solution for traffic issues as development expanded north, but will likely be phased out as US 281 is elevated.[citation needed]

The city of Draper, Utah, a suburb of Salt Lake City, announced in 2011 that it would be building Utah's first "ThrU Turn" at the intersection of 12300 South and State Street, just off Interstate 15 through Salt Lake County. Construction began in summer 2011 and was completed in fall 2011.[7][20][21] Other similar intersections were implemented in South Jordan[22] and Layton.[23]

In Australia, where traffic drives on the left, the Victorian state government introduced the "P-turn", similar to the Michigan left, at one intersection in 2009. This requires right-turning vehicles to turn left then make a U-turn. As of May 2015, the intersection in the southeastern Melbourne suburb of Frankston remains the only one of its kind in the state, and local residents have called for its removal.[24]

A similar style P-turn is used in the junction of the A4 Great West Road and A3002 Boston Manor Road in Brentford, England.

The design has been proposed in Toronto, Ontario, to relieve motorists who wish to make a left-turn on roadways which will contain a proposed streetcar line by the Transit City project.

In Ottawa, Ontario, a Michigan left exists to proceed from Riverside Drive, northbound, to Bank Street northbound.

Another Michigan left exists in Windsor, Ontario, on Huron Church Road, just north of the E.C. Row Expressway, where a narrow-median variant put in place years ago is now seldom used due to the realignment of the expressway in conjunction with the construction of the Herb Gray Parkway.

In Mexico, Guadalajara has a grade-separated variation of this setup in the intersection of Mariano Otero Avenue and Manuel Gómez Morín Beltway (20°37′50″N 103°26′06″W / 20.630666°N 103.434981°W / 20.630666; -103.434981).[25] Traffic flowing through Mariano Otero is routed through an overpass above the beltway, with two access roads allowing right turn on all four possible directions; the U-turns, meanwhile, are built underneath the beltway and allow the left turn from Mariano Otero avenue to the beltway. U-turn intersections are very common throughout Mexico, particularly in Mexico City.

Brazil is also known to utilize this setup especially in São Paulo.

This is the design at some busy junctions in Hong Kong. In Hong Kong Island examples include the junction of Fleming Road and Harbour Road in Wan Chai North, and the junction of Hennessey Road and Canal Road Flyover in Wong Nai Chung. In Kowloon this design exists between Cheong Wan Road and Hong Chong Road/Salisbury Road.

The capital city of Angola, Luanda, makes widespread use of a simplified variant of this type of intersection on its two- and three-lane, median-separated throughways instead of using traffic lights. Larger junctions use this intersection type instead of much more costly grade-separated interchanges.

This type of intersection configuration, as with any engineered solution to a traffic problem, carries with it certain advantages and disadvantages and has been subject to several studies.

Studies[by whom?][when?] have shown a major reduction in left-turn collisions and a minor reduction in merging and diverging collisions, due to the shifting of left turns outside the main intersection[clarification needed].[1] In addition, it reduces the number of different traffic light phases, significantly increasing traffic flow. Because separate phases are no longer needed for left turns, this increases green time for through traffic. The effect on turning traffic is mixed.[1] Consequently, the timing of traffic signals along a highway featuring the design is made easier by the elimination of left-turn phases both on that highway and along intersecting roadways contributing to the reduction of travel times and the increased capacity of those roadways.[1]

It has been shown to enhance safety to pedestrians crossing either street at an intersection featuring the design since they only encounter through traffic and vehicles making right turns. The left-turning movement, having been eliminated, removes one source of potential vehicle-pedestrian conflict.[1] One minor disadvantage of the Michigan left is the extra distance required for the motorist to drive. Sometimes the distance to the turnaround is as far away as 1⁄4 mile (400 m) past the intersection. This design leads to each motorist driving an additional 1⁄2 mile (800 m) to make a left turn. It also results in left-turning vehicles having to stop up to three times in the execution of the turn.

Pave My Driveway Costs