Asphalt And Paving Companies Near Me  Bedfordview

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Asphalt And Paving Companies Near Me in  Bedfordview  except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Residential Paving Companies Costs

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Pave My Driveway Quotes

The primary use (70%) of asphalt Asphalt Companies In My Area is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Asphalt concrete

Paving Companies Near Me

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Asphalt And Paving Companies Near Me Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

The Paving Company Near Me

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Asphalt Driveway Into Garage the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Paver Repair Price

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Michigan left

Paving Companies Quotes

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Asphalt Installation Cost Estimate

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Residential Paving Companies Costs

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Pave My Driveway Quotes

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Driveway Price

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Asphalt Repair Costs

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Brick

Paving Specialists Price

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Asphalt Driveway Repair Price

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Asphalt Construction Quotes

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Paving Services Price

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Driveway Pavers Cost Estimate

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Asphalt Installation Price

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Asphalt Repair Quotes

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Tarmac Driveways Near Me

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Asphalt concrete

Paving Services Quotes

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Asphalt Construction Quotes

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Residential Paving Cost Estimate

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Bleeding (roads)

Paving Specialists Near Me

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Asphalt And Paving Companies Near Me in  Bedfordview ?

Asphalt Surfacing Company Cost Estimate Raised sidewalks beside a 2000-year-old paved road, Pompeii, Italy

A sidewalk (American English) or pavement (British English), also known as a footpath or footway, is a path along the side of a road. A sidewalk may accommodate moderate changes in grade (height) and is normally separated from the vehicular section by a curb. There may also be a median strip or road verge (a strip of vegetation, grass or bushes or trees or a combination of these) either between the sidewalk and the roadway or between the sidewalk and the boundary.

In some places, the same term may also be used for a paved path, trail or footpath that is not next to a road, for example, a path through a park.

The term "sidewalk" is usually preferred in most of North America, along with many other countries worldwide that are not members of the Commonwealth of Nations. The term "pavement" is more common in the United Kingdom,[1] as well as parts of the Mid-Atlantic United States such as Philadelphia and New Jersey.[2][3] Many Commonwealth countries use the term "footpath". The professional, civil engineering and legal term for this in North America is "sidewalk" while in the United Kingdom it is "footway".[4]

In the United States, the term sidewalk is used for the pedestrian path beside a road. "Shared use paths" or "multi-use paths" are available for use by both pedestrians and bicyclists.[5] "Walkway" is a more comprehensive term that includes stairs, ramps, passageways, and related structures that facilitate the use of a path as well as the sidewalk.[6]

In the UK, the term "footpath" is mostly used for paths that do not abut a roadway.[7] The term "shared-use path" is used where cyclists are also able to use the same section of path as pedestrians.[8]

East India House, Leadenhall Street, London, 1766. The sidewalk is separated from the main street by six bollards in front of the building.

There is evidence that sidewalks were built in ancient times. It was claimed that the Greek city of Corinth was paved by the 4th-century, and the Romans were particularly prolific sidewalk builders – they called them semitas.[9]

However, by the Middle Ages, narrow roads had reverted to being simultaneously used by pedestrians and wagons without any formal separation between the two categories. Early attempts at ensuring the adequate maintenance of foot-ways or sidewalks were often made, such as the 1623 Act for Colchester, although they were generally not very effective.[10]

Following the Great Fire of London in 1666, attempts were slowly made to bring some order to the sprawling city. In 1671, 'Certain Orders, Rules and Directions Touching the Paving and Cleansing The Streets, Lanes and Common Passages within the City of London' were formulated, calling for all streets to be adequately paved for pedestrians with cobblestones. Purbeck stone was widely used as a durable paving material. Bollards were also installed to protect pedestrians from the traffic in the middle of the road.

A series of Paving Acts from the House of Commons during the 18th century, especially the 1766 Paving & Lighting Act, authorized the City of London Corporation to create foot-ways throughout all the streets of London, to pave them with Purbeck stone (the thoroughfare in the middle was generally cobblestone) and to raise them above the street level with curbs forming the separation.[11] The Corporation was also made responsible for the regular upkeep of the roads, including their cleaning and repair, for which they charged a tax from 1766.[12] By the late 19th-century large and spacious sidewalks were routinely constructed in European capitals, and were associated with urban sophistication.

In the United States, adjoining property owners must in most situations finance all or part of the cost of sidewalk construction. In a legal case in 1917 involving E. L. Stewart, a former member of the Louisiana House of Representatives and a lawyer in Minden in Webster Parish, the Louisiana Supreme Court ruled that owners must pay whether they wish for the sidewalk to be constructed or not.[13]

Pedestrians walking on the pavement (sidewalk) in London.

Sidewalks play an important role in transportation, as they provide a safe path for people to walk along that is separated from the motorized traffic. They aid road safety by minimizing interaction between pedestrians and motorized traffic. Sidewalks are normally in pairs, one on each side of the road, with the center section of the road for motorized vehicles.

In rural roads, sidewalks may not be present as the amount of traffic (pedestrian or motorized) may not be enough to justify separating the two. In suburban and urban areas, sidewalks are more common. In town and city centers (known as downtown in North America) the amount of pedestrian traffic can exceed motorized traffic, and in this case the sidewalks can occupy more than half of the width of the road, or the whole road can be reserved for pedestrians, see Pedestrian zone.

Sidewalks may have a small effect on reducing vehicle miles traveled and carbon dioxide emissions. A study of sidewalk and transit investments in Seattle neighborhoods found vehicle travel reductions of 6 to 8% and CO2 emission reductions of 1.3 to 2.2% [14]

Sidewalk with bike path See also: Road traffic safety

Research commissioned for the Florida Department of Transportation, published in 2005, found that, in Florida, the Crash Reduction Factor (used to estimate the expected reduction of crashes during a given period) resulting from the installation of sidewalks averaged 74%.[15] Research at the University of North Carolina for the U.S. Department of Transportation found that the presence or absence of a sidewalk and the speed limit are significant factors in the likelihood of a vehicle/pedestrian crash. Sidewalk presence had a risk ratio of 0.118, which means that the likelihood of a crash on a road with a paved sidewalk was 88.2 percent lower than one without a sidewalk. “This should not be interpreted to mean that installing sidewalks would necessarily reduce the likelihood of pedestrian/motor vehicle crashes by 88.2 percent in all situations. However, the presence of a sidewalk clearly has a strong beneficial effect of reducing the risk of a ‘walking along roadway’ pedestrian/motor vehicle crash.” The study does not count crashes that happen when walking across a roadway. The speed limit risk ratio was 1.116, which means that a 16.1-km/h (10-mi/h) increase in the limit yields a factor of (1.116)10 or 3.[16]

The presence or absence of sidewalks was one of three factors that were found to encourage drivers to choose lower, safer speeds.[17]

On the other hand, the implementation of schemes which involve the removal of sidewalks, such as shared space schemes, are reported to deliver a dramatic drop in crashes and congestion too, which indicates that a number of other factors, such as the local speed environment, also play an important role in whether sidewalks are necessarily the best local solution for pedestrian safety.[18]

In cold weather, black ice is a common problem with unsalted sidewalks. The ice forms a thin transparent surface film which is almost impossible to see, and so results in many slips by pedestrians.

Riding bicycles on sidewalks is discouraged since some research shows it to be more dangerous than riding in the street.[19] Some jurisdictions prohibit sidewalk riding except for children. In addition to the risk of cyclist/pedestrian collisions, cyclists face increase risks from collisions with motor vehicles at street crossings and driveways. Riding in the direction opposite to traffic in the adjacent lane is especially risky.[20]

Since residents of neighborhoods with sidewalks are more likely to walk, they tend to have lower rates of cardiovascular disease, obesity, and other health issues related to sedentary lifestyles.[21] Also, children who walk to school have been shown to have better concentration.[22]

Native Americans busking at Orchard Road, Singapore

Some sidewalks may be used as social spaces with sidewalk cafes, markets, or busking musicians, as well as for parking for a variety of vehicles including cars, motorbikes and bicycles.

Contemporary sidewalks are most often made of concrete in the United States and Canada, while tarmac, asphalt, brick, stone, slab and (increasingly) rubber are more common in Europe.[23] Different materials are more or less friendly environmentally: pumice-based trass, for example, when used as an extender is less energy-intensive than Portland cement concrete or petroleum-based materials such as asphalt or tar-penetration macadam). Multi-use paths alongside roads are sometimes made of materials that are softer than concrete, such as asphalt.

In the 19th century and early 20th century, sidewalks of wood were common in some North American locations. They may still be found at historic beach locations and in conservation areas to protect the land beneath and around, called boardwalks.

Brick sidewalks are found in some urban areas, usually for aesthetic purposes. Brick sidewalk construction usually involves the usage of a mechanical vibrator to lock the bricks in place after they have been laid (and/or to prepare the soil before laying). Although this might also be done by other tools (as regular hammers and heavy rolls), a vibrator is often used to speed up the process.

Stone slabs called flagstones or flags are sometimes used where an attractive appearance is required, as in historic town centers. In other places, pre-cast concrete slabs (called paving slabs or, less correctly, paving stones) are used. These may be colored or textured to resemble stone.

Freshly laid concrete sidewalk, with horizontal strain-relief grooves faintly visible

In the United States and Canada, the most common type of sidewalk consists of a poured concrete ribbon, examples of which from as early as the 1860s can be found in good repair in San Francisco, and stamped with the name of the contractor and date of installation.[citation needed] When quantities of Portland cement were first imported to the United States in the 1880s, its principal use was in the construction of sidewalks.[24]

Today, most sidewalk ribbons are constructed with cross-lying strain-relief grooves placed or sawn at regular intervals typically 5 feet (1.5 m) apart. This partitioning, an improvement over the continuous slab, was patented in 1924 by Arthur Wesley Hall and William Alexander McVay, who wished to minimize damage to the concrete from the effects of tectonic and temperature fluctuations, both of which can crack longer segments.[25] The technique is not perfect, as freeze-thaw cycles (in cold-weather regions) and tree root growth can eventually result in damage which requires repair.

In highly variable climates which undergo multiple freeze-thaw cycles, the concrete blocks will be separated by expansion joints to allow for thermal expansion without breakage. The use of expansion joints in sidewalks may not be necessary, as the concrete will shrink while setting.[26]

In the United Kingdom, Australia and France suburban sidewalks are most commonly constructed of tarmac. In urban or inner-city areas sidewalks are most commonly constructed of slabs, stone, or brick depending upon the surrounding street architecture and furniture.

Driveway

Asphalt Construction Quotes A diagram illustrating traffic movements in the interchange Plan of rejected diverging diamond interchange in Findlay, Ohio

A diverging diamond interchange (DDI), also called a double crossover diamond interchange (DCD),[1] is a type of diamond interchange in which the two directions of traffic on the non-freeway road cross to the opposite side on both sides of the bridge at the freeway. It is unusual in that it requires traffic on the freeway overpass (or underpass) to briefly drive on the opposite side of the road from what is customary for the jurisdiction. The crossover "X" sections can either be traffic-light intersections or one-side overpasses to travel above the opposite lanes without stopping, to allow nonstop traffic flow when relatively sparse traffic.

Like the continuous flow intersection, the diverging diamond interchange allows for two-phase operation at all signalized intersections within the interchange. This is a significant improvement in safety, since no long turns (e.g. left turns where traffic drives on the right side of the road) must clear opposing traffic and all movements are discrete, with most controlled by traffic signals.[2] Its at-grade variant can be seen as a two-leg continuous flow intersection.[3]

Additionally, the design can improve the efficiency of an interchange, as the lost time for various phases in the cycle can be redistributed as green time—there are only two clearance intervals (the time for traffic signals to change from green to yellow to red) instead of the six or more found in other interchange designs.

A diverging diamond can be constructed for limited cost, at an existing straight-line bridge, by building crisscross intersections outside the bridge ramps to switch traffic lanes before entering the bridge. The switchover lanes, each with 2 side ramps, introduce a new risk of drivers turning onto an empty, wrong, do-not-enter, exit-lane and driving wrongway down a freeway exit ramp to confront high-speed, oncoming traffic. Studies have analyzed various roadsigns to reduce similar driver errors.

Diverging diamond roads have been used in France since the 1970s. However, the diverging diamond interchange was listed by Popular Science magazine as one of the best innovations in 2009 (engineering category) in "Best of What's New 2009".[4]

Pictures from the first diverging diamond interchange in the United States, in Springfield, Missouri
Top left: Traffic enters the interchange along Missouri Route 13
Top right: Traffic crosses over to the left side of the road
Bottom left: Traffic crosses over Interstate 44
Bottom right:Traffic crosses back over to the right side of the road. Southbound approach to the I-44/Route 13 interchange in Springfield

Prior to 2009 the only known diverging diamond interchanges were in France in the communities of Versailles, Le Perreux-sur-Marne (A4 at N486) and Seclin, all built in the 1970s.[5] (The ramps of the first two have been reconfigured to accommodate ramps of other interchanges, but they continue to function as diverging diamond interchanges.)

Despite the fact that such interchanges already existed, the idea for the DDI was "reinvented" around 2000, inspired by the former "synchronized split-phasing" type freeway-to-freeway interchange between Interstate 95 and I-695 north of Baltimore.[6]

In 2005, the Ohio Department of Transportation (ODOT) considered reconfiguring the existing interchange on Interstate 75 at U.S. Route 224 and State Route 15 west of Findlay as a diverging diamond interchange to improve traffic flow. Had it been constructed, it would have been the first DDI in the United States.[7] By 2006, ODOT had reconsidered, instead adding lanes to the existing overpass.[8][9]

The Missouri Department of Transportation was the first US agency to construct one, in Springfield at the junction between I-44 and Missouri Route 13 (at 37°15′01″N 93°18′39″W / 37.2503°N 93.3107°W / 37.2503; -93.3107 (Springfield, Missouri diverging diamond interchange)). Construction began the week of January 12, 2009, and the interchange opened on June 21, 2009.[10][11] This interchange was a conversion of an existing standard diamond interchange, and used the existing bridge.

The first interchange in Canada opened on August 13, 2017 at Macleod Trail and 162 Avenue South in Calgary, Alberta.[12]

The interchange in Seclin (at 50°32′41″N 3°3′21″E / 50.54472°N 3.05583°E / 50.54472; 3.05583) between the A1 and Route d'Avelin was somewhat more specialized than in the diagram at right: eastbound traffic on Route d'Avelin intending to enter the A1 northbound must keep left and cross the northernmost bridge before turning left to proceed north onto A1; eastbound traffic continuing east on Route d'Avelin must select a single center lane, merge with A1 traffic that is exiting to proceed east, and cross a center bridge. All westbound traffic that is continuing west or turning south onto A1 uses the southernmost bridge.

Additional research was conducted by a partnership of the Virginia Polytechnic Institute and State University and the Turner-Fairbank Highway Research Center and published by Ohio Section of the Institute of Transportation Engineers.[13] The Federal Highway Administration released a publication titled "Alternative Intersections/Interchanges: Informational Report (AIIR)" [14] with a chapter dedicated to this design.

As of January 19, 2018, 106 DDIs were operational across the world including:

3D computer generated DCMI DCMI traffic flow patterns

A free-flowing interchange variant, patented in 2015,[21] has received recent attention.[22][23][24] Called the double crossover merging interchange (DCMI), it includes elements from the diverging diamond interchange, the tight diamond interchange, and the stack interchange. It eliminates the disadvantages of weaving and of merging into the outside lane from which the standard DDI variation suffers. As of 2016, no such interchanges have been constructed.

Paving Services Price

https://www.helpwikileaks.co.za/johannesburg-2/

Help Wiki Leaks Have Paving Companies Near Me List

Residential Asphalt Paving Near Me Midrand

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Residential Asphalt Paving Near Me in Midrand except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Asphalt Driveway Costs

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Asphalt Driveway Paving Price

The primary use (70%) of asphalt Best Way To Clean Driveway Pavers is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Macadam

Paver Repair Quotes

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Residential Asphalt Paving Near Me Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Asphalt Repair Quotes

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Asphalt Driveway Cost 2017 the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Paving Services Price

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Sealcoat

Paving Companies Quotes

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Asphalt Driveway Paving Price

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Paver Repair Quotes

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Asphalt Driveway Paving Price

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Contractors Near Me

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Paving Contractors Costs

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Asphalt concrete

Paver Repair Quotes

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Pave My Driveway Costs

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Asphalt Driveway Near Me

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Commercial Paving Quotes

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Paver Repair Quotes

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Paving Companies Quotes

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Driveway Pavers Near Me

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Asphalt Construction Quotes

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Sidewalk

Commercial Paving Cost Estimate

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Asphalt Paving Price

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Driveway Paving Contractors Cost Estimate

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Sidewalk

Asphalt Surfacing Company Price

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Residential Asphalt Paving Near Me in Midrand ?

Commercial Paving Cost Estimate Asphalt batch mix plant A machine laying asphalt concrete, fed from a dump truck

Asphalt concrete (commonly called asphalt,[1] blacktop, or pavement in North America, and tarmac or bitumen macadam or rolled asphalt in the United Kingdom and the Republic of Ireland) is a composite material commonly used to surface roads, parking lots, airports, as well as the core of embankment dams.[2] It consists of mineral aggregate bound together with asphalt, laid in layers, and compacted. The process was refined and enhanced by Belgian inventor and U.S. immigrant Edward de Smedt.[3]

The terms asphalt (or asphaltic) concrete, bituminous asphalt concrete, and bituminous mixture are typically used only in engineering and construction documents, which define concrete as any composite material composed of mineral aggregate adhered with a binder. The abbreviation, AC, is sometimes used for asphalt concrete but can also denote asphalt content or asphalt cement, referring to the liquid asphalt portion of the composite material.

As shown in this cross-section, many older roadways are smoothed by applying a thin layer of asphalt concrete to the existing portland cement concrete, creating a composite pavement.

Mixing of asphalt and aggregate is accomplished in one of several ways:[4]

Hot-mix asphalt concrete (commonly abbreviated as HMA) This is produced by heating the asphalt binder to decrease its viscosity, and drying the aggregate to remove moisture from it prior to mixing. Mixing is generally performed with the aggregate at about 300 °F (roughly 150 °C) for virgin asphalt and 330 °F (166 °C) for polymer modified asphalt, and the asphalt cement at 200 °F (95 °C). Paving and compaction must be performed while the asphalt is sufficiently hot. In many countries paving is restricted to summer months because in winter the compacted base will cool the asphalt too much before it is able to be packed to the required density. HMA is the form of asphalt concrete most commonly used on high traffic pavements such as those on major highways, racetracks and airfields. It is also used as an environmental liner for landfills, reservoirs, and fish hatchery ponds.[5] Asphaltic concrete laying machine in operation in Laredo, Texas Warm-mix asphalt concrete (commonly abbreviated as WMA) This is produced by adding either zeolites, waxes, asphalt emulsions, or sometimes even water to the asphalt binder prior to mixing. This allows significantly lower mixing and laying temperatures and results in lower consumption of fossil fuels, thus releasing less carbon dioxide, aerosols and vapors. Not only are working conditions improved, but the lower laying-temperature also leads to more rapid availability of the surface for use, which is important for construction sites with critical time schedules. The usage of these additives in hot mixed asphalt (above) may afford easier compaction and allow cold weather paving or longer hauls. Use of warm mix is rapidly expanding. A survey of US asphalt producers found that nearly 25% of asphalt produced in 2012 was warm mix, a 416% increase since 2009.[6] Cold-mix asphalt concrete This is produced by emulsifying the asphalt in water with (essentially) soap prior to mixing with the aggregate. While in its emulsified state the asphalt is less viscous and the mixture is easy to work and compact. The emulsion will break after enough water evaporates and the cold mix will, ideally, take on the properties of an HMA pavement. Cold mix is commonly used as a patching material and on lesser trafficked service roads. Cut-back asphalt concrete Is a form of cold mix asphalt produced by dissolving the binder in kerosene or another lighter fraction of petroleum prior to mixing with the aggregate. While in its dissolved state the asphalt is less viscous and the mix is easy to work and compact. After the mix is laid down the lighter fraction evaporates. Because of concerns with pollution from the volatile organic compounds in the lighter fraction, cut-back asphalt has been largely replaced by asphalt emulsion.[7] Mastic asphalt concrete, or sheet asphalt This is produced by heating hard grade blown bitumen (i.e., partly oxidised) in a green cooker (mixer) until it has become a viscous liquid after which the aggregate mix is then added. The bitumen aggregate mixture is cooked (matured) for around 6–8 hours and once it is ready the mastic asphalt mixer is transported to the work site where experienced layers empty the mixer and either machine or hand lay the mastic asphalt contents on to the road. Mastic asphalt concrete is generally laid to a thickness of around ​3⁄4–1 ​3⁄16 inches (20–30 mm) for footpath and road applications and around ​3⁄8 of an inch (10 mm) for flooring or roof applications. High-modulus asphalt concrete, sometimes referred to by the French-language acronym EMÉ (enrobé à module élevé) This uses a very hard bituminous (penetration 10/20), sometimes modified, in proportions close to 6% on the weight of the aggregates, and a proportion of mineral powder also high, between 8–10%, to create an asphalt concrete layer with a high modulus of elasticity, of the order of 13000 MPa, as well as very high fatigue strengths.[8] High-modulus asphalt layers are used both in reinforcement operations and in the construction of new reinforcements for medium and heavy traffic. In base layers, they tend to exhibit a greater capacity of absorbing tensions and, in general, better fatigue resistance.[9]

In addition to the asphalt and aggregate, additives, such as polymers, and antistripping agents may be added to improve the properties of the final product.

Asphalt concrete pavements—especially those at airfields—are sometimes called tarmac for historical reasons, although they do not contain tar and are not constructed using the macadam process.

A variety of specialty asphalt concrete mixtures have been developed to meet specific needs, such as stone-matrix asphalt, which is designed to ensure a very strong wearing surface, or porous asphalt pavements, which are permeable and allow water to drain through the pavement for controlling stormwater.

An airport taxiway, one of the uses of asphalt concrete

Different types of asphalt concrete have different performance characteristics in terms of surface durability, tire wear, braking efficiency and roadway noise. In principle, the determination of appropriate asphalt performance characteristics must take into account the volume of traffic in each vehicle category, and the performance requirements of the friction course. Asphalt concrete generates less roadway noise than a Portland cement concrete surface, and is typically less noisy than chip seal surfaces.[10][11]

Because tire noise is generated through the conversion of kinetic energy to sound waves, more noise is produced as the speed of a vehicle increases. The notion that highway design might take into account acoustical engineering considerations, including the selection of the type of surface paving, arose in the early 1970s.[12][13] With regard to structural performance, the asphalt behaviour depends on a variety of factors including the material, loading and environmental condition. Furthermore, the performance of pavement varies over time. Therefore, the long-term behaviour of asphalt pavement is different from its short-term performance. The LTPP is a research program by the FHWA, which is specifically focusing on long-term pavement behaviour.[14][15]

Asphalt damaged by frost heaves

Asphalt deterioration can include crocodile cracking, potholes, upheaval, raveling, bleeding, rutting, shoving, stripping, and grade depressions. In cold climates, frost heaves can crack asphalt even in one winter. Filling the cracks with bitumen is a temporary fix, but only proper compaction and drainage can slow this process.

Factors that cause asphalt concrete to deteriorate over time mostly fall into one of three categories: construction quality, environmental considerations, and traffic loads. Often, damage results from combinations of factors in all three categories.

Construction quality is critical to pavement performance. This includes the construction of utility trenches and appurtenances that are placed in the pavement after construction. Lack of compaction in the surface of the asphalt, especially on the longitudinal joint can reduce the life of a pavement by 30 to 40%. Service trenches in pavements after construction have been said to reduce the life of the pavement by 50%, mainly due to the lack of compaction in the trench, and also because of water intrusion through improperly sealed joints.

Environmental factors include heat and cold, the presence of water in the subbase or subgrade soil underlying the pavement, and frost heaves.

High temperatures soften the asphalt binder, allowing heavy tire loads to deform the pavement into ruts. Paradoxically, high heat and strong sunlight also cause the asphalt to oxidize, becoming stiffer and less resilient, leading to crack formation. Cold temperatures can cause cracks as the asphalt contracts. Cold asphalt is also less resilient and more vulnerable to cracking.

Water trapped under the pavement softens the subbase and subgrade, making the road more vulnerable to traffic loads. Water under the road freezes and expands in cold weather, causing and enlarging cracks. In spring thaw, the ground thaws from the top down, so water is trapped between the pavement above and the still-frozen soil underneath. This layer of saturated soil provides little support for the road above, leading to the formation of potholes. This is more of a problem for silty or clay soils than sandy or gravelly soils. Some jurisdictions pass frost laws to reduce the allowable weight of trucks during the spring thaw season and protect their roads.

The damage a vehicle causes is proportional to the axle load raised to the fourth power,[16] so doubling the weight an axle carries actually causes 16 times as much damage. Wheels cause the road to flex slightly, resulting in fatigue cracking, which often leads to crocodile cracking. Vehicle speed also plays a role. Slowly moving vehicles stress the road over a longer period of time, increasing ruts, cracking, and corrugations in the asphalt pavement.

Other causes of damage include heat damage from vehicle fires, or solvent action from chemical spills.

The life of a road can be prolonged through good design, construction and maintenance practices. During design, engineers measure the traffic on a road, paying special attention to the number and types of trucks. They also evaluate the subsoil to see how much load it can withstand. The pavement and subbase thicknesses are designed to withstand the wheel loads. Sometimes, geogrids are used to reinforce the subbase and further strengthen the roads. Drainage, including ditches, storm drains and underdrains are used to remove water from the roadbed, preventing it from weakening the subbase and subsoil.

Good maintenance practices center on keeping water out of the pavement, subbase and subsoil. Maintaining and cleaning ditches and storm drains will extend the life of the road at low cost. Sealing small cracks with bituminous crack sealer prevents water from enlarging cracks through frost weathering, or percolating down to the subbase and softening it.

For somewhat more distressed roads, a chip seal or similar surface treatment may be applied. As the number, width and length of cracks increases, more intensive repairs are needed. In order of generally increasing expense, these include thin asphalt overlays, multicourse overlays, grinding off the top course and overlaying, in-place recycling, or full-depth reconstruction of the roadway.

It is far less expensive to keep a road in good condition than it is to repair it once it has deteriorated. This is why some agencies place the priority on preventive maintenance of roads in good condition, rather than reconstructing roads in poor condition. Poor roads are upgraded as resources and budget allow. In terms of lifetime cost and long term pavement conditions, this will result in better system performance. Agencies that concentrate on restoring their bad roads often find that by the time they've repaired them all, the roads that were in good condition have deteriorated.[17]

Some agencies use a pavement management system to help prioritize maintenance and repairs.

A small-scale asphalt recycler

Asphalt concrete is 100% recyclable and is the most widely reused construction material in the world. Very little asphalt concrete — less than 1 percent, according to a 2011 survey by the Federal Highway Administration and the National Asphalt Pavement Association — is actually disposed of in landfills.[18]

There is asphalt recycling on a large scale (known as in-place asphalt recycling or asphalt recycling performed at a hot mix plant) and asphalt recycling on a smaller scale. For small scale asphalt recycling, the user separates asphalt material into three different categories:

Blacktop cookies Chunks of virgin uncompacted hot mix asphalt which can be used for pothole repair. The use of blacktop cookies has been investigated as a less expensive, less labor-intensive, more durable alternative to repairing potholes with cold patch. In a program in Pittsfield, Massachusetts, workers purchased new hot mix asphalt and spread it liberally on the ground to produce approximately 25 lb. wafers. Once cooled, the wafers could be stored until reheated in a hotbox to make minor road repairs. Blacktop cookies may also be produced from leftover material from paving jobs.[19] Reclaimed asphalt pavement (RAP) Chunks of asphalt that have been removed from a road, parking lot or driveway are considered RAP. These chunks of asphalt typically are ripped up when making a routine asphalt repair, man hole repair, catch basin repair or sewer main repair. Because the asphalt has been compacted, RAP is a denser asphalt material and typically takes longer to recycle than blacktop cookies. Asphalt millings Small pieces of asphalt produced by mechanically grinding asphalt surfaces are referred to as asphalt millings. Large millings that have a rich, black tint indicating a high asphalt cement content are best for asphalt recycling purposes. Surface millings are recommended over full depth millings when choosing asphalt millings to recycle. Full depth millings usually contain sub-base contaminants such as gravel, mud and sand. These sub base contaminants will leach oil away from original asphalt and dry out the material in the recycling process. Asphalt milled from asphalt is better than asphalt milled from concrete. When milling asphalt from concrete the dust that is created is not compatible with asphalt products because it is not asphalt.[20]

Small scale asphalt recycling will usually involve high speed on-site asphalt recycling equipment or overnight soft heat asphalt recycling.

Small scale asphalt recycling is used when wanting to make smaller road repairs vs. large scale asphalt recycling which is done for making new asphalt or for tearing up old asphalt and simultaneously recycling / replacing existing asphalt. Recycled asphalt is very effective for pothole and utility cut repairs. The recycled asphalt will generally last as long or longer than the road around it as new asphalt cement has been added back to the material.[21]

For larger scale asphalt recycling, several in-place recycling techniques have been developed to rejuvenate oxidized binders and remove cracking, although the recycled material is generally not very water-tight or smooth and should be overlaid with a new layer of asphalt concrete. Cold in-place recycling mills off the top layers of asphalt concrete and mixes the resulting loose millings with asphalt emulsion. The mixture is then placed back down on the roadway and compacted. The water in the emulsion is allowed to evaporate for a week or so, and new hot-mix asphalt is laid on top.

Asphalt concrete that is removed from a pavement is usually stockpiled for later use as aggregate for new hot mix asphalt at an asphalt plant. This reclaimed material, or RAP, is crushed to a consistent gradation and added to the HMA mixing process. Sometimes waste materials, such as asphalt roofing shingles, crushed glass, or rubber from old tires, are added to asphalt concrete as is the case with rubberized asphalt, but there is a concern that the hybrid material may not be recyclable.

Asphalt

Asphalt Paving Cost Estimate Asphalt batch mix plant A machine laying asphalt concrete, fed from a dump truck

Asphalt concrete (commonly called asphalt,[1] blacktop, or pavement in North America, and tarmac or bitumen macadam or rolled asphalt in the United Kingdom and the Republic of Ireland) is a composite material commonly used to surface roads, parking lots, airports, as well as the core of embankment dams.[2] It consists of mineral aggregate bound together with asphalt, laid in layers, and compacted. The process was refined and enhanced by Belgian inventor and U.S. immigrant Edward de Smedt.[3]

The terms asphalt (or asphaltic) concrete, bituminous asphalt concrete, and bituminous mixture are typically used only in engineering and construction documents, which define concrete as any composite material composed of mineral aggregate adhered with a binder. The abbreviation, AC, is sometimes used for asphalt concrete but can also denote asphalt content or asphalt cement, referring to the liquid asphalt portion of the composite material.

As shown in this cross-section, many older roadways are smoothed by applying a thin layer of asphalt concrete to the existing portland cement concrete, creating a composite pavement.

Mixing of asphalt and aggregate is accomplished in one of several ways:[4]

Hot-mix asphalt concrete (commonly abbreviated as HMA) This is produced by heating the asphalt binder to decrease its viscosity, and drying the aggregate to remove moisture from it prior to mixing. Mixing is generally performed with the aggregate at about 300 °F (roughly 150 °C) for virgin asphalt and 330 °F (166 °C) for polymer modified asphalt, and the asphalt cement at 200 °F (95 °C). Paving and compaction must be performed while the asphalt is sufficiently hot. In many countries paving is restricted to summer months because in winter the compacted base will cool the asphalt too much before it is able to be packed to the required density. HMA is the form of asphalt concrete most commonly used on high traffic pavements such as those on major highways, racetracks and airfields. It is also used as an environmental liner for landfills, reservoirs, and fish hatchery ponds.[5] Asphaltic concrete laying machine in operation in Laredo, Texas Warm-mix asphalt concrete (commonly abbreviated as WMA) This is produced by adding either zeolites, waxes, asphalt emulsions, or sometimes even water to the asphalt binder prior to mixing. This allows significantly lower mixing and laying temperatures and results in lower consumption of fossil fuels, thus releasing less carbon dioxide, aerosols and vapors. Not only are working conditions improved, but the lower laying-temperature also leads to more rapid availability of the surface for use, which is important for construction sites with critical time schedules. The usage of these additives in hot mixed asphalt (above) may afford easier compaction and allow cold weather paving or longer hauls. Use of warm mix is rapidly expanding. A survey of US asphalt producers found that nearly 25% of asphalt produced in 2012 was warm mix, a 416% increase since 2009.[6] Cold-mix asphalt concrete This is produced by emulsifying the asphalt in water with (essentially) soap prior to mixing with the aggregate. While in its emulsified state the asphalt is less viscous and the mixture is easy to work and compact. The emulsion will break after enough water evaporates and the cold mix will, ideally, take on the properties of an HMA pavement. Cold mix is commonly used as a patching material and on lesser trafficked service roads. Cut-back asphalt concrete Is a form of cold mix asphalt produced by dissolving the binder in kerosene or another lighter fraction of petroleum prior to mixing with the aggregate. While in its dissolved state the asphalt is less viscous and the mix is easy to work and compact. After the mix is laid down the lighter fraction evaporates. Because of concerns with pollution from the volatile organic compounds in the lighter fraction, cut-back asphalt has been largely replaced by asphalt emulsion.[7] Mastic asphalt concrete, or sheet asphalt This is produced by heating hard grade blown bitumen (i.e., partly oxidised) in a green cooker (mixer) until it has become a viscous liquid after which the aggregate mix is then added. The bitumen aggregate mixture is cooked (matured) for around 6–8 hours and once it is ready the mastic asphalt mixer is transported to the work site where experienced layers empty the mixer and either machine or hand lay the mastic asphalt contents on to the road. Mastic asphalt concrete is generally laid to a thickness of around ​3⁄4–1 ​3⁄16 inches (20–30 mm) for footpath and road applications and around ​3⁄8 of an inch (10 mm) for flooring or roof applications. High-modulus asphalt concrete, sometimes referred to by the French-language acronym EMÉ (enrobé à module élevé) This uses a very hard bituminous (penetration 10/20), sometimes modified, in proportions close to 6% on the weight of the aggregates, and a proportion of mineral powder also high, between 8–10%, to create an asphalt concrete layer with a high modulus of elasticity, of the order of 13000 MPa, as well as very high fatigue strengths.[8] High-modulus asphalt layers are used both in reinforcement operations and in the construction of new reinforcements for medium and heavy traffic. In base layers, they tend to exhibit a greater capacity of absorbing tensions and, in general, better fatigue resistance.[9]

In addition to the asphalt and aggregate, additives, such as polymers, and antistripping agents may be added to improve the properties of the final product.

Asphalt concrete pavements—especially those at airfields—are sometimes called tarmac for historical reasons, although they do not contain tar and are not constructed using the macadam process.

A variety of specialty asphalt concrete mixtures have been developed to meet specific needs, such as stone-matrix asphalt, which is designed to ensure a very strong wearing surface, or porous asphalt pavements, which are permeable and allow water to drain through the pavement for controlling stormwater.

An airport taxiway, one of the uses of asphalt concrete

Different types of asphalt concrete have different performance characteristics in terms of surface durability, tire wear, braking efficiency and roadway noise. In principle, the determination of appropriate asphalt performance characteristics must take into account the volume of traffic in each vehicle category, and the performance requirements of the friction course. Asphalt concrete generates less roadway noise than a Portland cement concrete surface, and is typically less noisy than chip seal surfaces.[10][11]

Because tire noise is generated through the conversion of kinetic energy to sound waves, more noise is produced as the speed of a vehicle increases. The notion that highway design might take into account acoustical engineering considerations, including the selection of the type of surface paving, arose in the early 1970s.[12][13] With regard to structural performance, the asphalt behaviour depends on a variety of factors including the material, loading and environmental condition. Furthermore, the performance of pavement varies over time. Therefore, the long-term behaviour of asphalt pavement is different from its short-term performance. The LTPP is a research program by the FHWA, which is specifically focusing on long-term pavement behaviour.[14][15]

Asphalt damaged by frost heaves

Asphalt deterioration can include crocodile cracking, potholes, upheaval, raveling, bleeding, rutting, shoving, stripping, and grade depressions. In cold climates, frost heaves can crack asphalt even in one winter. Filling the cracks with bitumen is a temporary fix, but only proper compaction and drainage can slow this process.

Factors that cause asphalt concrete to deteriorate over time mostly fall into one of three categories: construction quality, environmental considerations, and traffic loads. Often, damage results from combinations of factors in all three categories.

Construction quality is critical to pavement performance. This includes the construction of utility trenches and appurtenances that are placed in the pavement after construction. Lack of compaction in the surface of the asphalt, especially on the longitudinal joint can reduce the life of a pavement by 30 to 40%. Service trenches in pavements after construction have been said to reduce the life of the pavement by 50%, mainly due to the lack of compaction in the trench, and also because of water intrusion through improperly sealed joints.

Environmental factors include heat and cold, the presence of water in the subbase or subgrade soil underlying the pavement, and frost heaves.

High temperatures soften the asphalt binder, allowing heavy tire loads to deform the pavement into ruts. Paradoxically, high heat and strong sunlight also cause the asphalt to oxidize, becoming stiffer and less resilient, leading to crack formation. Cold temperatures can cause cracks as the asphalt contracts. Cold asphalt is also less resilient and more vulnerable to cracking.

Water trapped under the pavement softens the subbase and subgrade, making the road more vulnerable to traffic loads. Water under the road freezes and expands in cold weather, causing and enlarging cracks. In spring thaw, the ground thaws from the top down, so water is trapped between the pavement above and the still-frozen soil underneath. This layer of saturated soil provides little support for the road above, leading to the formation of potholes. This is more of a problem for silty or clay soils than sandy or gravelly soils. Some jurisdictions pass frost laws to reduce the allowable weight of trucks during the spring thaw season and protect their roads.

The damage a vehicle causes is proportional to the axle load raised to the fourth power,[16] so doubling the weight an axle carries actually causes 16 times as much damage. Wheels cause the road to flex slightly, resulting in fatigue cracking, which often leads to crocodile cracking. Vehicle speed also plays a role. Slowly moving vehicles stress the road over a longer period of time, increasing ruts, cracking, and corrugations in the asphalt pavement.

Other causes of damage include heat damage from vehicle fires, or solvent action from chemical spills.

The life of a road can be prolonged through good design, construction and maintenance practices. During design, engineers measure the traffic on a road, paying special attention to the number and types of trucks. They also evaluate the subsoil to see how much load it can withstand. The pavement and subbase thicknesses are designed to withstand the wheel loads. Sometimes, geogrids are used to reinforce the subbase and further strengthen the roads. Drainage, including ditches, storm drains and underdrains are used to remove water from the roadbed, preventing it from weakening the subbase and subsoil.

Good maintenance practices center on keeping water out of the pavement, subbase and subsoil. Maintaining and cleaning ditches and storm drains will extend the life of the road at low cost. Sealing small cracks with bituminous crack sealer prevents water from enlarging cracks through frost weathering, or percolating down to the subbase and softening it.

For somewhat more distressed roads, a chip seal or similar surface treatment may be applied. As the number, width and length of cracks increases, more intensive repairs are needed. In order of generally increasing expense, these include thin asphalt overlays, multicourse overlays, grinding off the top course and overlaying, in-place recycling, or full-depth reconstruction of the roadway.

It is far less expensive to keep a road in good condition than it is to repair it once it has deteriorated. This is why some agencies place the priority on preventive maintenance of roads in good condition, rather than reconstructing roads in poor condition. Poor roads are upgraded as resources and budget allow. In terms of lifetime cost and long term pavement conditions, this will result in better system performance. Agencies that concentrate on restoring their bad roads often find that by the time they've repaired them all, the roads that were in good condition have deteriorated.[17]

Some agencies use a pavement management system to help prioritize maintenance and repairs.

A small-scale asphalt recycler

Asphalt concrete is 100% recyclable and is the most widely reused construction material in the world. Very little asphalt concrete — less than 1 percent, according to a 2011 survey by the Federal Highway Administration and the National Asphalt Pavement Association — is actually disposed of in landfills.[18]

There is asphalt recycling on a large scale (known as in-place asphalt recycling or asphalt recycling performed at a hot mix plant) and asphalt recycling on a smaller scale. For small scale asphalt recycling, the user separates asphalt material into three different categories:

Blacktop cookies Chunks of virgin uncompacted hot mix asphalt which can be used for pothole repair. The use of blacktop cookies has been investigated as a less expensive, less labor-intensive, more durable alternative to repairing potholes with cold patch. In a program in Pittsfield, Massachusetts, workers purchased new hot mix asphalt and spread it liberally on the ground to produce approximately 25 lb. wafers. Once cooled, the wafers could be stored until reheated in a hotbox to make minor road repairs. Blacktop cookies may also be produced from leftover material from paving jobs.[19] Reclaimed asphalt pavement (RAP) Chunks of asphalt that have been removed from a road, parking lot or driveway are considered RAP. These chunks of asphalt typically are ripped up when making a routine asphalt repair, man hole repair, catch basin repair or sewer main repair. Because the asphalt has been compacted, RAP is a denser asphalt material and typically takes longer to recycle than blacktop cookies. Asphalt millings Small pieces of asphalt produced by mechanically grinding asphalt surfaces are referred to as asphalt millings. Large millings that have a rich, black tint indicating a high asphalt cement content are best for asphalt recycling purposes. Surface millings are recommended over full depth millings when choosing asphalt millings to recycle. Full depth millings usually contain sub-base contaminants such as gravel, mud and sand. These sub base contaminants will leach oil away from original asphalt and dry out the material in the recycling process. Asphalt milled from asphalt is better than asphalt milled from concrete. When milling asphalt from concrete the dust that is created is not compatible with asphalt products because it is not asphalt.[20]

Small scale asphalt recycling will usually involve high speed on-site asphalt recycling equipment or overnight soft heat asphalt recycling.

Small scale asphalt recycling is used when wanting to make smaller road repairs vs. large scale asphalt recycling which is done for making new asphalt or for tearing up old asphalt and simultaneously recycling / replacing existing asphalt. Recycled asphalt is very effective for pothole and utility cut repairs. The recycled asphalt will generally last as long or longer than the road around it as new asphalt cement has been added back to the material.[21]

For larger scale asphalt recycling, several in-place recycling techniques have been developed to rejuvenate oxidized binders and remove cracking, although the recycled material is generally not very water-tight or smooth and should be overlaid with a new layer of asphalt concrete. Cold in-place recycling mills off the top layers of asphalt concrete and mixes the resulting loose millings with asphalt emulsion. The mixture is then placed back down on the roadway and compacted. The water in the emulsion is allowed to evaporate for a week or so, and new hot-mix asphalt is laid on top.

Asphalt concrete that is removed from a pavement is usually stockpiled for later use as aggregate for new hot mix asphalt at an asphalt plant. This reclaimed material, or RAP, is crushed to a consistent gradation and added to the HMA mixing process. Sometimes waste materials, such as asphalt roofing shingles, crushed glass, or rubber from old tires, are added to asphalt concrete as is the case with rubberized asphalt, but there is a concern that the hybrid material may not be recyclable.

Asphalt Driveway Repair Price

https://www.helpwikileaks.co.za/johannesburg-2/

Help Wiki Leaks Have Paving Companies Near Me List

Paving Services Near Me Florida

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Paving Services Near Me in Florida  except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Asphalt Road Price

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Asphalt Contractors Near Me

The primary use (70%) of asphalt Asphalt Emulsion Companies is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Lane

Paving Contractors Costs

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Paving Services Near Me Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Driveway Pavers Near Me

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Asphalt Driveway Installation Near Me the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Paver Repair Quotes

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Asphalt concrete

Paver Repair Quotes

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Asphalt Driveway Repair Price

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Asphalt Driveway Repair Quotes

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Paver Repair Quotes

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Construction Quotes

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Asphalt Installation Price

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Crocodile cracking

Residential Paving Cost Estimate

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

The Paving Company Costs

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Driveway Paving Quotes

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Paving Companies Quotes

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Pave My Driveway Price

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Asphalt Surfacing Company Cost Estimate

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Residential Paving Companies Costs

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Paver Repair Quotes

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Bleeding (roads)

Pave My Driveway Price

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Driveway Paving Quotes

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Paver Repair Quotes

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Diverging diamond interchange

Residential Paving Companies Quotes

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Paving Services Near Me in Florida ?

Asphalt Repair Price Moderate to severe Fatigue cracking.

Crocodile cracking, also called alligator cracking and perhaps misleadingly fatigue cracking, is a common type of distress in asphalt pavement. The following is more closely related to fatigue cracking which is characterized by interconnecting or interlaced cracking in the asphalt layer resembling the hide of a crocodile.[1] Cell sizes can vary in size up to 11.80 inches (300 mm) across, but are typically less than 5.90 inches (150 mm) across. Fatigue cracking is generally a loading failure,[1] but numerous factors can contribute to it. It is often a sign of sub-base failure, poor drainage, or repeated over-loadings. It is important to prevent fatigue cracking, and repair as soon as possible, as advanced cases can be very costly to repair and can lead to formation of potholes or premature pavement failure.

It is usually studied under the transportation section of civil engineering.

Fatigue cracking is an asphalt pavement distress most often instigated by failure of the surface due to traffic loading. However, fatigue cracking can be greatly influenced by environmental and other effects while traffic loading remains the direct cause. Frequently, overloading happens because the base or subbase inadequately support the surface layer and subsequently cannot handle loads that it would normally endure.[2] There are many ways that the subbase or base can be weakened.

Poor drainage in the road bed is a frequent cause of this degradation of the base or subgrade.[1] A heavy spring thaw, similarly to poor drainage, can weaken the base course, leading to fatigue cracking.[1]

Stripping or raveling is another possible cause of fatigue cracking. Stripping occurs when poor adhesion between asphalt and aggregate allows the aggregate at the surface to dislodge. If left uncorrected, this reduces the thickness of the pavement, reducing the affected portion's ability to carry its designed loading.[1] This can cause fatigue cracking to develop rapidly, as overloading will happen with loads of less magnitude or frequency.

Edge cracking is the formation of crescent-shaped cracks near the edge of a road.[3] It is caused by lack of support of the road edge, sometimes due to poorly drained or weak shoulders. If left untreated, additional cracks will form until it resembles fatigue cracking.[3] Like wheel-path fatigue cracking, poor drainage is a main cause of edge cracking, as it weakens the base, which hastens the deterioration of the pavement.[4] Water ponding (a buildup of water which can also be called puddling) happens more frequently near the edge than in the center of the road path, as roads are usually sloped to prevent in-lane ponding. This leads to excess moisture in the shoulders and subbase at the road edge. Edge cracking differs from fatigue cracking in that the cracks form from the top down, where fatigue cracks usually start at the bottom and propagate to the surface.

Fatigue cracking manifests itself initially as longitudinal cracking (cracks along the direction of the flow of traffic) in the top layer of the asphalt.[5] These cracks are initially thin and sparsely distributed. If further deterioration is allowed, these longitudinal cracks are connected by transverse cracks to form sharp sided, prismatic pieces. This interlaced cracking pattern resembles the scales on the back of a crocodile or alligator, hence the nickname, crocodile cracking.

More severe cases involve pumping of fines, spalling, and loose pieces of pavement. The most severe cases of fatigue cracking often occur with other pavement distresses, but are exemplified by: potholes,[1] large cracks(3/8" or larger), and severely spalled edges.[4]

There are many different ways to measure fatigue cracking, but in general a pavement distress manual or index will be used. For example, the Pavement Condition Index is widely used to quantify the overall level of distress and condition of a section of road. Measurement of fatigue cracking specifically (and pavement distress in general) is necessary to determine the overall condition of a road, and for determination of a time-line for rehabilitation and/or repair. There are many other rating systems, and many rating systems currently in use are based on the AASHO Road Test.

There are two important criteria to take into account when measuring fatigue cracking. The first is the extent of the cracking. This is the amount of road surface area which is affected by this pavement distress. The second criterion is the severity of the cracking.[6] Severity, which has been discussed above, refers to how far the cracking has progressed, and is often directly a function of crack width.[6] Severity may be rated numerically, or given a rating from "low" to "severe". The rating may be entered into a pavement management system, which will suggest a priority and method for the repair.

Systems have been developed that detect fatigue cracking and other types of pavement distress automatically.[7] They measure the severity and frequency of alligator cracking on the road-path. One such machine is the road surface profilometer, which is mounted on a vehicle and measures the profile of the road surface while it is moving down the roadway.

Preventing fatigue cracking can be as simple as preventing the common causes. For example, reducing overloading on an asphalt pavement or improving drainage[2] can prevent fatigue cracking in many cases. Prevention primarily depends on designing and constructing the pavement and subbase to support the expected traffic loads, and providing good drainage to keep water out of the subbase.

A good strategy to prevent overloading, which is a main cause of fatigue cracking, is to increase the depth of the asphalt layer. According to certain researchers, pavements that exceed a certain minimum strength or thickness can hypothetically handle infinitely many loads without showing structural defects, including fatigue cracking.[1] These pavements are called perpetual pavements or long-term performance pavements (LTPP).

When repairing pavement affected by fatigue cracking, the main cause of the distress should be determined. However, often the specific cause is fairly difficult to determine, and prevention is therefore correspondingly difficult. Any investigation should involve digging a pit or coring the pavement and subbase to determine the pavement's structural makeup as well as determining whether or not subsurface moisture is a contributing factor.[1] The repair needed also differs based on the severity and extent of the cracking.

In the early stages, sealing cracks with crack sealant limits further deterioration of the subgrade due to moisture penetration. Small areas may be repaired by removal of the affected area, and replacement with new base and asphalt surface.[2] Once the damage has progressed or the affected area is large and extensive, a structural asphalt overlay or complete reconstruction is necessary to ensure structural integrity. Proper repair may include first sealing cracks with crack sealant, installing paving fabric over a tack coat, or milling the damaged asphalt. An overlay of hot mix asphalt is then placed over the completed repair. [2]

Road surface

Paver Repair Quotes A diagram illustrating traffic movements in the interchange Plan of rejected diverging diamond interchange in Findlay, Ohio

A diverging diamond interchange (DDI), also called a double crossover diamond interchange (DCD),[1] is a type of diamond interchange in which the two directions of traffic on the non-freeway road cross to the opposite side on both sides of the bridge at the freeway. It is unusual in that it requires traffic on the freeway overpass (or underpass) to briefly drive on the opposite side of the road from what is customary for the jurisdiction. The crossover "X" sections can either be traffic-light intersections or one-side overpasses to travel above the opposite lanes without stopping, to allow nonstop traffic flow when relatively sparse traffic.

Like the continuous flow intersection, the diverging diamond interchange allows for two-phase operation at all signalized intersections within the interchange. This is a significant improvement in safety, since no long turns (e.g. left turns where traffic drives on the right side of the road) must clear opposing traffic and all movements are discrete, with most controlled by traffic signals.[2] Its at-grade variant can be seen as a two-leg continuous flow intersection.[3]

Additionally, the design can improve the efficiency of an interchange, as the lost time for various phases in the cycle can be redistributed as green time—there are only two clearance intervals (the time for traffic signals to change from green to yellow to red) instead of the six or more found in other interchange designs.

A diverging diamond can be constructed for limited cost, at an existing straight-line bridge, by building crisscross intersections outside the bridge ramps to switch traffic lanes before entering the bridge. The switchover lanes, each with 2 side ramps, introduce a new risk of drivers turning onto an empty, wrong, do-not-enter, exit-lane and driving wrongway down a freeway exit ramp to confront high-speed, oncoming traffic. Studies have analyzed various roadsigns to reduce similar driver errors.

Diverging diamond roads have been used in France since the 1970s. However, the diverging diamond interchange was listed by Popular Science magazine as one of the best innovations in 2009 (engineering category) in "Best of What's New 2009".[4]

Pictures from the first diverging diamond interchange in the United States, in Springfield, Missouri
Top left: Traffic enters the interchange along Missouri Route 13
Top right: Traffic crosses over to the left side of the road
Bottom left: Traffic crosses over Interstate 44
Bottom right:Traffic crosses back over to the right side of the road. Southbound approach to the I-44/Route 13 interchange in Springfield

Prior to 2009 the only known diverging diamond interchanges were in France in the communities of Versailles, Le Perreux-sur-Marne (A4 at N486) and Seclin, all built in the 1970s.[5] (The ramps of the first two have been reconfigured to accommodate ramps of other interchanges, but they continue to function as diverging diamond interchanges.)

Despite the fact that such interchanges already existed, the idea for the DDI was "reinvented" around 2000, inspired by the former "synchronized split-phasing" type freeway-to-freeway interchange between Interstate 95 and I-695 north of Baltimore.[6]

In 2005, the Ohio Department of Transportation (ODOT) considered reconfiguring the existing interchange on Interstate 75 at U.S. Route 224 and State Route 15 west of Findlay as a diverging diamond interchange to improve traffic flow. Had it been constructed, it would have been the first DDI in the United States.[7] By 2006, ODOT had reconsidered, instead adding lanes to the existing overpass.[8][9]

The Missouri Department of Transportation was the first US agency to construct one, in Springfield at the junction between I-44 and Missouri Route 13 (at 37°15′01″N 93°18′39″W / 37.2503°N 93.3107°W / 37.2503; -93.3107 (Springfield, Missouri diverging diamond interchange)). Construction began the week of January 12, 2009, and the interchange opened on June 21, 2009.[10][11] This interchange was a conversion of an existing standard diamond interchange, and used the existing bridge.

The first interchange in Canada opened on August 13, 2017 at Macleod Trail and 162 Avenue South in Calgary, Alberta.[12]

The interchange in Seclin (at 50°32′41″N 3°3′21″E / 50.54472°N 3.05583°E / 50.54472; 3.05583) between the A1 and Route d'Avelin was somewhat more specialized than in the diagram at right: eastbound traffic on Route d'Avelin intending to enter the A1 northbound must keep left and cross the northernmost bridge before turning left to proceed north onto A1; eastbound traffic continuing east on Route d'Avelin must select a single center lane, merge with A1 traffic that is exiting to proceed east, and cross a center bridge. All westbound traffic that is continuing west or turning south onto A1 uses the southernmost bridge.

Additional research was conducted by a partnership of the Virginia Polytechnic Institute and State University and the Turner-Fairbank Highway Research Center and published by Ohio Section of the Institute of Transportation Engineers.[13] The Federal Highway Administration released a publication titled "Alternative Intersections/Interchanges: Informational Report (AIIR)" [14] with a chapter dedicated to this design.

As of January 19, 2018, 106 DDIs were operational across the world including:

3D computer generated DCMI DCMI traffic flow patterns

A free-flowing interchange variant, patented in 2015,[21] has received recent attention.[22][23][24] Called the double crossover merging interchange (DCMI), it includes elements from the diverging diamond interchange, the tight diamond interchange, and the stack interchange. It eliminates the disadvantages of weaving and of merging into the outside lane from which the standard DDI variation suffers. As of 2016, no such interchanges have been constructed.

Paving Specialists Price

https://www.helpwikileaks.co.za/johannesburg-2/

Help Wiki Leaks Have Paving Companies Near Me List

Commercial Paving Contractors Near Me Sandton

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Commercial Paving Contractors Near Me in Sandton except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Paving Companies Quotes

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Paving Companies Quotes

The primary use (70%) of asphalt Asphalt Paving Companies For Sale is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Boulevard

Commercial Paving Price

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Commercial Paving Contractors Near Me Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Tarmac Driveways Near Me

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  How To Pave A Driveway With Asphalt the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Paver Repair Price

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Driveway

Asphalt Driveway Repair Quotes

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Paver Repair Cost Estimate

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Asphalt Surfacing Company Cost Estimate

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Asphalt Contractors Costs

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Surfacing Company Price

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Asphalt Surfacing Company Cost Estimate

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Concrete

Asphalt Construction Quotes

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Asphalt Installation Price

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

The Paving Company Near Me

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Asphalt Driveway Near Me

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Asphalt Repair Costs

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Asphalt Driveway Price

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Tarmac Driveways Near Me

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Residential Paving Companies Costs

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Michigan left

Pave My Driveway Costs

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Asphalt Driveway Repair Price

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Asphalt Installation Cost Estimate

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Driveway

Pave My Driveway Costs

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Commercial Paving Contractors Near Me in Sandton ?

Asphalt Companies Costs

Bleeding or flushing is shiny, black surface film of asphalt on the road surface caused by upward movement of asphalt in the pavement surface.[1][2] Common causes of bleeding are too much asphalt in asphalt concrete, hot weather, low space air void content and quality of asphalt.[3]

Bleeding is a safety concern since it results in a very smooth surface, without the texture required to prevent hydroplaning.

Sidewalk

Driveway Paving Contractors Cost Estimate Driveway to a farm Driveway apron and sloped curb to a public street, all under construction

A driveway (also called drive in UK English)[1] is a type of private road for local access to one or a small group of structures, and is owned and maintained by an individual or group.

Driveways rarely have traffic lights, but some that bear heavy traffic, especially those leading to commercial businesses and parks, do.

Driveways may be decorative in ways that public roads cannot, because of their lighter traffic and the willingness of owners to invest in their construction. Driveways are not resurfaced, snow blown or otherwise maintained by governments. They are generally designed to conform to the architecture of connected houses or other buildings.

Some of the materials that can be used for driveways include concrete, decorative brick, cobblestone, block paving, asphalt, gravel, decomposed granite, and surrounded with grass or other ground-cover plants.

Driveways are commonly used as paths to private garages, carports, or houses. On large estates, a driveway may be the road that leads to the house from the public road, possibly with a gate in between. Some driveways divide to serve different homeowners. A driveway may also refer to a small apron of pavement in front of a garage with a curb cut in the sidewalk, sometimes too short to accommodate a car.

Often, either by choice or to conform with local regulations, cars are parked in driveways in order to leave streets clear for traffic. Moreover, some jurisdictions prohibit parking or leaving standing any motor vehicle upon any residential lawn area (defined as the property from the front of a residential house, condominium, or cooperative to the street line other than a driveway, walkway, concrete or blacktopped surface parking space).[2] Other examples include the city of Berkeley, California that forbids "any person to park or leave standing, or cause to be parked or left standing any vehicle upon any public street in the City for seventy-two or more consecutive hours."[3] Other areas may prohibit leaving vehicles on residential streets during certain times (for instance, to accommodate regular street cleaning), necessitating the use of driveways.

Residential driveways are also used for such things as garage sales, automobile washing and repair, and recreation, notably (in North America) for basketball practice.

Another form of driveway is a 'Run-Up', or short piece of land used usually at the front of the property to park a vehicle on.[citation needed]

Asphalt Contractors Costs

https://www.helpwikileaks.co.za/johannesburg-2/

Help Wiki Leaks Have Paving Companies Near Me List

Blacktop Contractors Northcliff

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Blacktop Contractors in Northcliff except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Paving Companies Quotes

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Asphalt Paving Cost Estimate

The primary use (70%) of asphalt Asphalt Driveway Cost Estimate is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Road surface

Driveway Paving Contractors Near Me

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Blacktop Contractors Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Paving Services Price

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Best Pavers To Use For A Driveway the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Asphalt Repair Costs

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Road surface

Paver Repair Quotes

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Driveway Pavers Near Me

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Driveway Paving Contractors Cost Estimate

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Asphalt Driveway Price

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Surfacing Company Cost Estimate

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Asphalt Driveway Repair Quotes

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Sealcoat

Asphalt Surfacing Company Cost Estimate

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Asphalt Driveway Paving Price

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Asphalt Surfacing Company Price

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Commercial Paving Cost Estimate

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Paver Repair Quotes

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Paver Repair Quotes

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Asphalt Contractors Costs

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Asphalt Surfacing Contractors Price

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Permeable paving

Asphalt Paving Cost Estimate

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Paving Services Price

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Pave My Driveway Quotes

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Boulevard

Asphalt Contractors Near Me

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Blacktop Contractors in Northcliff ?

Asphalt Surfacing Company Price Raised sidewalks beside a 2000-year-old paved road, Pompeii, Italy

A sidewalk (American English) or pavement (British English), also known as a footpath or footway, is a path along the side of a road. A sidewalk may accommodate moderate changes in grade (height) and is normally separated from the vehicular section by a curb. There may also be a median strip or road verge (a strip of vegetation, grass or bushes or trees or a combination of these) either between the sidewalk and the roadway or between the sidewalk and the boundary.

In some places, the same term may also be used for a paved path, trail or footpath that is not next to a road, for example, a path through a park.

The term "sidewalk" is usually preferred in most of North America, along with many other countries worldwide that are not members of the Commonwealth of Nations. The term "pavement" is more common in the United Kingdom,[1] as well as parts of the Mid-Atlantic United States such as Philadelphia and New Jersey.[2][3] Many Commonwealth countries use the term "footpath". The professional, civil engineering and legal term for this in North America is "sidewalk" while in the United Kingdom it is "footway".[4]

In the United States, the term sidewalk is used for the pedestrian path beside a road. "Shared use paths" or "multi-use paths" are available for use by both pedestrians and bicyclists.[5] "Walkway" is a more comprehensive term that includes stairs, ramps, passageways, and related structures that facilitate the use of a path as well as the sidewalk.[6]

In the UK, the term "footpath" is mostly used for paths that do not abut a roadway.[7] The term "shared-use path" is used where cyclists are also able to use the same section of path as pedestrians.[8]

East India House, Leadenhall Street, London, 1766. The sidewalk is separated from the main street by six bollards in front of the building.

There is evidence that sidewalks were built in ancient times. It was claimed that the Greek city of Corinth was paved by the 4th-century, and the Romans were particularly prolific sidewalk builders – they called them semitas.[9]

However, by the Middle Ages, narrow roads had reverted to being simultaneously used by pedestrians and wagons without any formal separation between the two categories. Early attempts at ensuring the adequate maintenance of foot-ways or sidewalks were often made, such as the 1623 Act for Colchester, although they were generally not very effective.[10]

Following the Great Fire of London in 1666, attempts were slowly made to bring some order to the sprawling city. In 1671, 'Certain Orders, Rules and Directions Touching the Paving and Cleansing The Streets, Lanes and Common Passages within the City of London' were formulated, calling for all streets to be adequately paved for pedestrians with cobblestones. Purbeck stone was widely used as a durable paving material. Bollards were also installed to protect pedestrians from the traffic in the middle of the road.

A series of Paving Acts from the House of Commons during the 18th century, especially the 1766 Paving & Lighting Act, authorized the City of London Corporation to create foot-ways throughout all the streets of London, to pave them with Purbeck stone (the thoroughfare in the middle was generally cobblestone) and to raise them above the street level with curbs forming the separation.[11] The Corporation was also made responsible for the regular upkeep of the roads, including their cleaning and repair, for which they charged a tax from 1766.[12] By the late 19th-century large and spacious sidewalks were routinely constructed in European capitals, and were associated with urban sophistication.

In the United States, adjoining property owners must in most situations finance all or part of the cost of sidewalk construction. In a legal case in 1917 involving E. L. Stewart, a former member of the Louisiana House of Representatives and a lawyer in Minden in Webster Parish, the Louisiana Supreme Court ruled that owners must pay whether they wish for the sidewalk to be constructed or not.[13]

Pedestrians walking on the pavement (sidewalk) in London.

Sidewalks play an important role in transportation, as they provide a safe path for people to walk along that is separated from the motorized traffic. They aid road safety by minimizing interaction between pedestrians and motorized traffic. Sidewalks are normally in pairs, one on each side of the road, with the center section of the road for motorized vehicles.

In rural roads, sidewalks may not be present as the amount of traffic (pedestrian or motorized) may not be enough to justify separating the two. In suburban and urban areas, sidewalks are more common. In town and city centers (known as downtown in North America) the amount of pedestrian traffic can exceed motorized traffic, and in this case the sidewalks can occupy more than half of the width of the road, or the whole road can be reserved for pedestrians, see Pedestrian zone.

Sidewalks may have a small effect on reducing vehicle miles traveled and carbon dioxide emissions. A study of sidewalk and transit investments in Seattle neighborhoods found vehicle travel reductions of 6 to 8% and CO2 emission reductions of 1.3 to 2.2% [14]

Sidewalk with bike path See also: Road traffic safety

Research commissioned for the Florida Department of Transportation, published in 2005, found that, in Florida, the Crash Reduction Factor (used to estimate the expected reduction of crashes during a given period) resulting from the installation of sidewalks averaged 74%.[15] Research at the University of North Carolina for the U.S. Department of Transportation found that the presence or absence of a sidewalk and the speed limit are significant factors in the likelihood of a vehicle/pedestrian crash. Sidewalk presence had a risk ratio of 0.118, which means that the likelihood of a crash on a road with a paved sidewalk was 88.2 percent lower than one without a sidewalk. “This should not be interpreted to mean that installing sidewalks would necessarily reduce the likelihood of pedestrian/motor vehicle crashes by 88.2 percent in all situations. However, the presence of a sidewalk clearly has a strong beneficial effect of reducing the risk of a ‘walking along roadway’ pedestrian/motor vehicle crash.” The study does not count crashes that happen when walking across a roadway. The speed limit risk ratio was 1.116, which means that a 16.1-km/h (10-mi/h) increase in the limit yields a factor of (1.116)10 or 3.[16]

The presence or absence of sidewalks was one of three factors that were found to encourage drivers to choose lower, safer speeds.[17]

On the other hand, the implementation of schemes which involve the removal of sidewalks, such as shared space schemes, are reported to deliver a dramatic drop in crashes and congestion too, which indicates that a number of other factors, such as the local speed environment, also play an important role in whether sidewalks are necessarily the best local solution for pedestrian safety.[18]

In cold weather, black ice is a common problem with unsalted sidewalks. The ice forms a thin transparent surface film which is almost impossible to see, and so results in many slips by pedestrians.

Riding bicycles on sidewalks is discouraged since some research shows it to be more dangerous than riding in the street.[19] Some jurisdictions prohibit sidewalk riding except for children. In addition to the risk of cyclist/pedestrian collisions, cyclists face increase risks from collisions with motor vehicles at street crossings and driveways. Riding in the direction opposite to traffic in the adjacent lane is especially risky.[20]

Since residents of neighborhoods with sidewalks are more likely to walk, they tend to have lower rates of cardiovascular disease, obesity, and other health issues related to sedentary lifestyles.[21] Also, children who walk to school have been shown to have better concentration.[22]

Native Americans busking at Orchard Road, Singapore

Some sidewalks may be used as social spaces with sidewalk cafes, markets, or busking musicians, as well as for parking for a variety of vehicles including cars, motorbikes and bicycles.

Contemporary sidewalks are most often made of concrete in the United States and Canada, while tarmac, asphalt, brick, stone, slab and (increasingly) rubber are more common in Europe.[23] Different materials are more or less friendly environmentally: pumice-based trass, for example, when used as an extender is less energy-intensive than Portland cement concrete or petroleum-based materials such as asphalt or tar-penetration macadam). Multi-use paths alongside roads are sometimes made of materials that are softer than concrete, such as asphalt.

In the 19th century and early 20th century, sidewalks of wood were common in some North American locations. They may still be found at historic beach locations and in conservation areas to protect the land beneath and around, called boardwalks.

Brick sidewalks are found in some urban areas, usually for aesthetic purposes. Brick sidewalk construction usually involves the usage of a mechanical vibrator to lock the bricks in place after they have been laid (and/or to prepare the soil before laying). Although this might also be done by other tools (as regular hammers and heavy rolls), a vibrator is often used to speed up the process.

Stone slabs called flagstones or flags are sometimes used where an attractive appearance is required, as in historic town centers. In other places, pre-cast concrete slabs (called paving slabs or, less correctly, paving stones) are used. These may be colored or textured to resemble stone.

Freshly laid concrete sidewalk, with horizontal strain-relief grooves faintly visible

In the United States and Canada, the most common type of sidewalk consists of a poured concrete ribbon, examples of which from as early as the 1860s can be found in good repair in San Francisco, and stamped with the name of the contractor and date of installation.[citation needed] When quantities of Portland cement were first imported to the United States in the 1880s, its principal use was in the construction of sidewalks.[24]

Today, most sidewalk ribbons are constructed with cross-lying strain-relief grooves placed or sawn at regular intervals typically 5 feet (1.5 m) apart. This partitioning, an improvement over the continuous slab, was patented in 1924 by Arthur Wesley Hall and William Alexander McVay, who wished to minimize damage to the concrete from the effects of tectonic and temperature fluctuations, both of which can crack longer segments.[25] The technique is not perfect, as freeze-thaw cycles (in cold-weather regions) and tree root growth can eventually result in damage which requires repair.

In highly variable climates which undergo multiple freeze-thaw cycles, the concrete blocks will be separated by expansion joints to allow for thermal expansion without breakage. The use of expansion joints in sidewalks may not be necessary, as the concrete will shrink while setting.[26]

In the United Kingdom, Australia and France suburban sidewalks are most commonly constructed of tarmac. In urban or inner-city areas sidewalks are most commonly constructed of slabs, stone, or brick depending upon the surrounding street architecture and furniture.

Alley

Asphalt Repair Price Permeable paving demonstration Stone paving in Santarém, Portugal

Permeable paving is a method of paving vehicle and pedestrian pathways that allows for infiltration of fluids. In pavement design the base is the top portion of the roadway that pedestrians or vehicles come into contact with. The media used for the base of permeable paving may be porous to allow for fluids to flow through it or nonporous media that are spaced so that fluid may flow in between the crack may be used. In addition to reducing surface runoff, permeable paving can trap suspended solids therefore filtering pollutants from stormwater.[1] Examples include roads, paths, and parking lots that are subject to light vehicular traffic, such as cycle-paths, service or emergency access lanes, road and airport shoulders, and residential sidewalks and driveways.

Although some porous paving materials appear nearly indistinguishable from nonporous materials, their environmental effects are qualitatively different. Whether it is pervious concrete, porous asphalt, paving stones or concrete or plastic-based pavers, all these pervious materials allow stormwater to percolate and infiltrate the surface areas, traditionally impervious to the soil below. The goal is to control stormwater at the source, reduce runoff and improve water quality by filtering pollutants in the substrata layers.

Permeable solutions can be based on: porous asphalt and concrete surfaces, concrete pavers (permeable interlocking concrete paving systems – PICP), or polymer-based grass pavers, grids and geocells. Porous pavements and concrete pavers (actually the voids in-between them) enable stormwater to drain through a stone base layer for on-site infiltration and filtering. Polymer based grass grid or cellular paver systems provide load bearing reinforcement for unpaved surfaces of gravel or turf.

Grass pavers, plastic turf reinforcing grids (PTRG), and geocells (cellular confinement systems) are honeycombed 3D grid-cellular systems, made of thin-walled HDPE plastic or other polymer alloys. These provide grass reinforcement, ground stabilization and gravel retention. The 3D structure reinforces infill and transfers vertical loads from the surface, distributing them over a wider area. Selection of the type of cellular grid depends to an extent on the surface material, traffic and loads. The cellular grids are installed on a prepared base layer of open-graded stone (higher void spacing) or engineered stone (stronger). The surface layer may be compacted gravel or topsoil seeded with grass and fertilizer. In addition to load support, the cellular grid reduces compaction of the soil to maintain permeability, while the roots improve permeability due to their root channels.[2]

In new suburban growth, porous pavements protect watersheds. In existing built-up areas and towns, redevelopment and reconstruction are opportunities to implement stormwater water management practices. Permeable paving is an important component in Low Impact Development (LID), a process for land development in the United States that attempts to minimize impacts on water quality and the similar concept of sustainable drainage systems (SuDS) in the United Kingdom.

The infiltration capacity of the native soil is a key design consideration for determining the depth of base rock for stormwater storage or for whether an underdrain system is needed.

Permeable paving surfaces have been demonstrated as effective in managing runoff from paved surfaces.[3][4] Large volumes of urban runoff causes serious erosion and siltation in surface water bodies. Permeable pavers provide a solid ground surface, strong enough to take heavy loads, like large vehicles, while at the same time they allow water to filter through the surface and reach the underlying soils, mimicking natural ground absorption.[5] They can reduce downstream flooding and stream bank erosion, and maintain base flows in rivers to keep ecosystems self-sustaining. Permeable pavers also combat erosion that occurs when grass is dry or dead, by replacing grassed areas in suburban and residential environments.[6]

Permeable paving surfaces keep the pollutants in place in the soil or other material underlying the roadway, and allow water seepage to groundwater recharge while preventing the stream erosion problems. They capture the heavy metals that fall on them, preventing them from washing downstream and accumulating inadvertently in the environment. In the void spaces, naturally occurring micro-organisms digest car oils, leaving little but carbon dioxide and water. Rainwater infiltration is usually less than that of an impervious pavement with a separate stormwater management facility somewhere downstream.[citation needed].in areas where infiltration is not possible due to unsuitable soil conditions permeable pavements are used in the attenuation mode where water is retained in the pavement and slowly released to surface water systems between storm events.

Permeable pavements may give urban trees the rooting space they need to grow to full size. A "structural-soil" pavement base combines structural aggregate with soil; a porous surface admits vital air and water to the rooting zone. This integrates healthy ecology and thriving cities, with the living tree canopy above, the city's traffic on the ground, and living tree roots below. The benefits of permeables on urban tree growth have not been conclusively demonstrated and many researchers have observed tree growth is not increased if construction practices compact materials before permeable pavements are installed.[7][8]

Permeable pavements are designed to replace Effective Impervious Areas (EIAs), not to manage stormwater from other impervious surfaces on site. Use of this technique must be part of an overall on site management system for stormwater, and is not a replacement for other techniques.

Also, in a large storm event, the water table below the porous pavement can rise to a higher level preventing the precipitation from being absorbed into the ground. The additional water is stored in the open graded crushed drain rock base and remains until the subgrade can absorb the water. For clay-based soils, or other low to 'non'-draining soils, it is important to increase the depth of the crushed drain rock base to allow additional capacity for the water as it waits to be infiltrated.

The best way to prevent this problem is to understand the soil infiltration rate, and design the pavement and base depths to meet the volume of water. Or, allow for adequate rain water run off at the pavement design stage.

Highly contaminated runoff can be generated by some land uses where pollutant concentrations exceed those typically found in stormwater. These "hot spots" include commercial plant nurseries, recycling facilities, fueling stations, industrial storage, marinas, some outdoor loading facilities, public works yards, hazardous materials generators (if containers are exposed to rainfall), vehicle service and maintenance areas, and vehicle and equipment washing and steam cleaning facilities. Since porous pavement is an infiltration practice, it should not be applied at stormwater hot spots due to the potential for groundwater contamination. All contaminated runoff should be prevented from entering municipal storm drain systems by using best management practices (BMPs) for the specific industry or activity.[9]

Reference sources differ on whether low or medium traffic volumes and weights are appropriate for porous pavements. For example, around truck loading docks and areas of high commercial traffic, porous pavement is sometimes cited as being inappropriate. However, given the variability of products available, the growing number of existing installations in North America and targeted research by both manufacturers and user agencies, the range of accepted applications seems to be expanding. Some concrete paver companies have developed products specifically for industrial applications. Working examples exist at fire halls, busy retail complex parking lots, and on public and private roads, including intersections in parts of North America with quite severe winter conditions.

Permeable pavements may not be appropriate when land surrounding or draining into the pavement exceeds a 20 percent slope, where pavement is down slope from buildings or where foundations have piped drainage at their footers. The key is to ensure that drainage from other parts of a site is intercepted and dealt with separately rather than being directed onto permeable surfaces.

Cold climates may present special challenges. Road salt contains chlorides that could migrate through the porous pavement into groundwater. Snow plow blades could catch block edges and damage surfaces. Sand cannot be used for snow and ice control on perveous asphalt or concrete because it will plug the pores and reduce permeability. Infiltrating runoff may freeze below the pavement, causing frost heave, though design modifications can reduce this risk. These potential problems do not mean that porous pavement cannot be used in cold climates. Porous pavement designed to reduce frost heave has been used successfully in Norway. Furthermore, experience suggests that rapid drainage below porous surfaces increases the rate of snow melt above.

Some estimates put the cost of permeable paving at two to three times that of conventional asphalt paving. Using permeable paving, however, can reduce the cost of providing larger or more stormwater BMPs on site, and these savings should be factored into any cost analysis. In addition, the off-site environmental impact costs of not reducing on-site stormwater volumes and pollution have historically been ignored or assigned to other groups (local government parks, public works and environmental restoration budgets, fisheries losses, etc.) The City of Olympia, Washington is studying the use of pervious concrete quite closely and finding that new stormwater regulations are making it a viable alternative to storm water.

Some permeable pavements require frequent maintenance because grit or gravel can block the open pores. This is commonly done by industrial vacuums that suck up all the sediment. If maintenance is not carried out on a regular basis, the porous pavements can begin to function more like impervious surfaces. With more advanced paving systems the levels of maintenance needed can be greatly decreased, elastomerically bound glass pavements requires less maintenance than regular concrete paving as the glass bound pavement has 50% more void space.

Plastic grid systems, if selected and installed correctly, are becoming more and more popular with local government maintenance personnel owing to the reduction in maintenance efforts: reduced gravel migration and weed suppression in public park settings.

Some permeable paving products are prone to damage from misuse, such as drivers who tear up patches of plastic & gravel grid systems by "joy riding" on remote parking lots at night. The damage is not difficult to repair but can look unsightly in the meantime. Grass pavers require supplemental watering in the first year to establish the vegetation, otherwise they may need to be re-seeded. Regional climate also means that most grass applications will go dormant during the dry season. While brown vegetation is only a matter of aesthetics, it can influence public support for this type of permeable paving.

Traditional permeable concrete paving bricks tend to lose their color in relatively short time which can be costly to replace or clean and is mainly due to the problem of efflorescence.

Efflorescence is a hardened crystalline deposit of salts, which migrate from the center of concrete or masonry pavers to the surface to form insoluble calcium carbonates that harden on the surface. Given time, these deposits form much like how a stalactite takes shape in a cave, except in this case on a flat surface. Efflorescence usually appears white, gray or black depending on the region.

Over time efflorescence begins to negatively affect the overall appearance of masonry/concrete and may cause the surfaces to become slippery when exposed to moisture. If left unchecked, this efflorescence will harden whereby the calcium/lime deposits begin to affect the integrity of the cementatious surface by slowly eroding away the cement paste and aggregate. In some cases it will also discolor stained or coated surfaces.

Efflorescence forms more quickly in areas that are exposed to excessive amounts of moisture such as near pool decks, spas, and fountains or where irrigation runoff is present. As a result, these affected regions become very slick when wet thereby causing a significant loss of "friction coefficient". This can be of serious concern especially as a public safety issue to individuals, principals and property owners by exposing them to possible injury and increased general liability claims.

Efflorescence remover chemicals can be used to remove calcium/lime build-up without damaging the integrity of the paving surface.

Installation of porous pavements is no more difficult than that of dense pavements, but has different specifications and procedures which must be strictly adhered to. Nine different families of porous paving materials present distinctive advantages and disadvantages for specific applications. Here are examples:

Main article: Pervious concrete

Pervious concrete is widely available, can bear frequent traffic, and is universally accessible. Pervious concrete quality depends on the installer's knowledge and experience.[10]

Plastic grids allow for a 100% porous system using structural grid systems for containing and stabilizing either gravel or turf. These grids come in a variety of shapes and sizes depending on use; from pathways to commercial parking lots. These systems have been used readily in Europe for over a decade, but are gaining popularity in North America due to requirements by government for many projects to meet LEED environmental building standards. Plastic grid system are also popular with homeowners due to their lower cost to install, ease of installation, and versatility. The ideal design for this type of grid system is a closed cell system, which prevents gravel/sand/turf from migrating laterally.[citation needed] It is also known as Grass pavers / Turf Pavers in India [11]

Porous asphalt is produced and placed using the same methods as conventional asphalt concrete; it differs in that fine (small) aggregates are omitted from the asphalt mixture. The remaining large, single-sized aggregate particles leave open voids that give the material its porosity and permeability. To ensure pavement strength, fiber may be added to the mix or a polymer-modified asphalt binder may be used.[12] Generally, porous asphalt pavements are designed with a subsurface reservoir that holds water that passes through the pavement, allowing it to evaporate and/or percolate slowly into the surround soils.[13][14]

Open-graded friction courses (OGFC) are a porous asphalt surface course used on highways to improve driving safety by removing water from the surface. Unlike a full-depth porous asphalt pavement, OGFCs do not drain water to the base of a pavement. Instead, they allow water to infiltrate the top 3/4 to 1.5 inch of the pavement and then drain out to the side of the roadway. This can improve the friction characteristics of the road and reducing road spray.[15]

Single-sized aggregate without any binder, e.g. loose gravel, stone-chippings, is another alternative. Although it can only be safely used in very low-speed, low-traffic settings, e.g. car-parks and drives, its potential cumulative area is great.[citation needed]

Grass pavement

Porous turf, if properly constructed, can be used for occasional parking like that at churches and stadia. Plastic turf reinforcing grids can be used to support the increased load.[16]:2 [17] Living turf transpires water, actively counteracting the "heat island" with what appears to be a green open lawn.

Main article: interlocking concrete pavers

Permeable interlocking concrete pavements are concrete units with open, permeable spaces between the units.[16]:2 They give an architectural appearance, and can bear both light and heavy traffic, particularly interlocking concrete pavers, excepting high-volume or high-speed roads.[18] Some products are polymer-coated and have an entirely porous face.

Permeable clay brick pavements are fired clay brick units with open, permeable spaces between the units. Clay pavers provide a durable surface that allows stormwater runoff to permeate through the joints.

Main article: Resin bound paving

Resin bound paving is a mixture of resin binder and aggregate. Clear resin is used to fully coat each aggregate particle before laying. Enough resin is used to allow each aggregate particle to adhere to one another and to the base yet leave voids for water to permeate through. Resin bound paving provides a strong and durable surface that is suitable for pedestrian and vehicular traffic in applications such as pathways, driveways, car parks and access roads.

Elastomerically bound recycled glass porous pavement consisting of bonding processed post consumer glass with a mixture of resins, pigments, granite and binding agents. Approximately 75 percent of glass in the U.S. is disposed in landfills.[19][20]

Stormwater management practices related to roadways:


Asphalt Paving Companies Price

https://www.helpwikileaks.co.za/johannesburg-2/

Help Wiki Leaks Have Paving Companies Near Me List

Blacktop Driveway Contractors Bryanston

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Blacktop Driveway Contractors in Bryanston except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Asphalt Driveway Price

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Paver Repair Quotes

The primary use (70%) of asphalt The Asphalt Company is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Macadam

Driveway Paving Quotes

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Blacktop Driveway Contractors Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Asphalt Driveway Price

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Asphalt Company Names the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Paver Repair Cost Estimate

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Boulevard

Asphalt Construction Quotes

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Paving Contractors Costs

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Asphalt Installation Price

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Driveway Pavers Cost Estimate

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Paving Companies Near Me

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Pave My Driveway Costs

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Bleeding (roads)

Paver Repair Quotes

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Asphalt Driveway Near Me

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Asphalt Driveway Costs

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Driveway Paving Cost Estimate

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Asphalt Driveway Paving Price

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Asphalt Driveway Costs

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Asphalt Road Price

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Pave My Driveway Costs

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Driveway

Commercial Paving Price

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Asphalt Driveway Paving Price

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Asphalt Paving Companies Price

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Concrete

Asphalt Surfacing Company Cost Estimate

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Blacktop Driveway Contractors in Bryanston ?

Pave My Driveway Quotes Standard design on a wide median.[1] Stylized depiction of the design in Grand Haven, Michigan, at US 31 and Robbins Road (north to the right), showing the additional area necessary to make a turn on a narrow median.[1] 43°2′40.18″N 86°13′12.57″W / 43.0444944°N 86.2201583°W / 43.0444944; -86.2201583 (US 31 at Robbins Road, Grand Haven, Michigan)

A Michigan left is an at-grade intersection design which replaces each left turn with a U-turn and a right turn. The design was given the name due to its frequent use along roads and highways in the U.S. state of Michigan since the late 1960s.[2] In other contexts, the intersection is called a median U-turn crossover or median U-turn.[1][3] The design is also sometimes referred to as a boulevard left,[4] a boulevard turnaround,[5] a Michigan loon[6] or a "ThrU Turn" intersection.[7][8]

Two versions of signs posted along an intersecting road or street at an intersection. Top: most commonly used; Bottom: lesser-used variant.

The design occurs at intersections where at least one road is a divided highway or boulevard, and left turns onto—and usually from—the divided highway are prohibited. In almost every case, the divided highway is multi-laned in both directions. When on the secondary road, drivers are directed to turn right. Within 1⁄4 mile (400 m), they queue into a designated U-turn (or cross-over) lane in the median.

When traffic clears they complete the U-turn and go back through the intersection. Additionally, the U-turn lane is designed for one-way traffic. Similarly, traffic on the divided highway cannot turn left at an intersection with a cross street. Instead, drivers are instructed to "overshoot" the intersection, go through the U-turn lane, come back to the intersection from the opposite direction, and turn right.

When vehicles enter the cross-over area, unless markings on the ground indicate two turning lanes in the cross-over, drivers form one lane. A cross-over with two lanes is designed at high-volume cross-overs, or when the right lane turns onto an intersecting street. In this case, the right lane is reserved for vehicles completing the design. Most crossovers must be made large enough for semi-trailer trucks to complete the crossover. This large cross-over area often leads to two vehicles incorrectly lining up at a single cross-over.

The maneuver forces the driver to quickly merge into the extreme left lane to complete the turn, usually from a complete stop. The turning vehicle is potentially a hazard and may cause a disruption in the flow of traffic in the left lane.[citation needed]

When the median of a road is too narrow to allow for a standard Michigan left maneuver, a variation can be used which widens the pavement in the opposite direction of travel. This widened pavement is known as a "bulb out"[7] or a "loon" (from the pavement's aerial resemblance to the aquatic bird).[6] Such a design is sometimes referred to as a Michigan loon; in Utah, as a ThrU Turn, which is a portmanteau combining the terms "Through" (the intersection, followed by a) "U Turn".[7]

In 2013, Michigan lefts were installed in Alabama for the first time, in several locations along heavily traveled U.S. Route 280 in metro Birmingham.[9]

Tucson, Arizona, began introducing Michigan lefts in 2013, at Ina/Oracle and Grant/Oracle. Their reception has been mixed.[10]

The design is relatively common in New Orleans, Louisiana, and its suburb Metairie, where city boulevards may be split by streetcar tracks,[11] and suburban thoroughfares are often split by drainage canals.[12] Some intersections using this design are signed similarly to those in Michigan, but with more descriptive text,[13] however in some cases the only signage is "No Left Turn" and drivers are left to figure it out for themselves.[14]

Since the redevelopment of the intersection between University Boulevard (MD 193) and Colesville Road (US 29) in Silver Spring, Maryland, a Michigan left has been used to increase efficiency of traffic through an otherwise underdeveloped and congested intersection. Due to its proximity to the Capital Beltway, heavy traffic is handled more safely and efficiently.[citation needed]

A typical Michigan left layout: Telegraph Road (US 24) at Warren Road near Detroit, showing Michigan lefts 42°20′28″N 83°16′23″W / 42.341°N 83.273°W / 42.341; -83.273 (US 24 (Telegraph Road) at Warren Road, Dearborn, Michigan)

The Michigan Department of Transportation first used the modern design at the intersection of 8 Mile Road (M-102) and Livernois Avenue[15] (42°26′46″N 83°08′28″W / 42.4461°N 83.141°W / 42.4461; -83.141 (M-102 (8 Mile Road) at Livernois Avenue))[16] in Detroit in the early 1960s. The increase in traffic flow and reduction in accidents was so dramatic (a 30–60% decrease[17]) that over 700 similar intersections have been deployed throughout the state since then.[18]

North Carolina has been implementing Michigan lefts along US 17 in the southeastern part of the state, outside Wilmington.[18] In 2015, a Michigan left was constructed at the intersection of Poplar Tent Road and Derita Road in the Charlotte suburb of Concord.[citation needed]

Columbus, Ohio introduced a Michigan left at the intersection of SR 161 and Strawberry Farms Boulevard in 2012. Reception has been mixed with several accidents occurring per year.[citation needed]

At least two Michigan lefts have existed in Texas. One was located at the intersection of Fondren Road and Bellaire Boulevard in Houston from the 1980s through 2007, when it was replaced with conventional left-turn lanes. Another was built in mid-2010 in Plano at the intersection of Preston Road and Legacy Drive.[19] In January 2014, the city announced plans to revert the turn to a traditional intersection as a result of drivers' confusion.[citation needed] A section of State Highway 71 east of Austin-Bergstrom International Airport at FM 973 in Austin, Texas did have a signalized Michigan U-turn which was constructed in 2014—this was a temporary fix until the SH71 tollway over SH130 (including the re-routing of FM973) was completed in early 2016.[citation needed] There are multiple Michigan left turns currently being used along US 281 north of Loop 1604 in San Antonio. These were adopted as a short-term solution for traffic issues as development expanded north, but will likely be phased out as US 281 is elevated.[citation needed]

The city of Draper, Utah, a suburb of Salt Lake City, announced in 2011 that it would be building Utah's first "ThrU Turn" at the intersection of 12300 South and State Street, just off Interstate 15 through Salt Lake County. Construction began in summer 2011 and was completed in fall 2011.[7][20][21] Other similar intersections were implemented in South Jordan[22] and Layton.[23]

In Australia, where traffic drives on the left, the Victorian state government introduced the "P-turn", similar to the Michigan left, at one intersection in 2009. This requires right-turning vehicles to turn left then make a U-turn. As of May 2015, the intersection in the southeastern Melbourne suburb of Frankston remains the only one of its kind in the state, and local residents have called for its removal.[24]

A similar style P-turn is used in the junction of the A4 Great West Road and A3002 Boston Manor Road in Brentford, England.

The design has been proposed in Toronto, Ontario, to relieve motorists who wish to make a left-turn on roadways which will contain a proposed streetcar line by the Transit City project.

In Ottawa, Ontario, a Michigan left exists to proceed from Riverside Drive, northbound, to Bank Street northbound.

Another Michigan left exists in Windsor, Ontario, on Huron Church Road, just north of the E.C. Row Expressway, where a narrow-median variant put in place years ago is now seldom used due to the realignment of the expressway in conjunction with the construction of the Herb Gray Parkway.

In Mexico, Guadalajara has a grade-separated variation of this setup in the intersection of Mariano Otero Avenue and Manuel Gómez Morín Beltway (20°37′50″N 103°26′06″W / 20.630666°N 103.434981°W / 20.630666; -103.434981).[25] Traffic flowing through Mariano Otero is routed through an overpass above the beltway, with two access roads allowing right turn on all four possible directions; the U-turns, meanwhile, are built underneath the beltway and allow the left turn from Mariano Otero avenue to the beltway. U-turn intersections are very common throughout Mexico, particularly in Mexico City.

Brazil is also known to utilize this setup especially in São Paulo.

This is the design at some busy junctions in Hong Kong. In Hong Kong Island examples include the junction of Fleming Road and Harbour Road in Wan Chai North, and the junction of Hennessey Road and Canal Road Flyover in Wong Nai Chung. In Kowloon this design exists between Cheong Wan Road and Hong Chong Road/Salisbury Road.

The capital city of Angola, Luanda, makes widespread use of a simplified variant of this type of intersection on its two- and three-lane, median-separated throughways instead of using traffic lights. Larger junctions use this intersection type instead of much more costly grade-separated interchanges.

This type of intersection configuration, as with any engineered solution to a traffic problem, carries with it certain advantages and disadvantages and has been subject to several studies.

Studies[by whom?][when?] have shown a major reduction in left-turn collisions and a minor reduction in merging and diverging collisions, due to the shifting of left turns outside the main intersection[clarification needed].[1] In addition, it reduces the number of different traffic light phases, significantly increasing traffic flow. Because separate phases are no longer needed for left turns, this increases green time for through traffic. The effect on turning traffic is mixed.[1] Consequently, the timing of traffic signals along a highway featuring the design is made easier by the elimination of left-turn phases both on that highway and along intersecting roadways contributing to the reduction of travel times and the increased capacity of those roadways.[1]

It has been shown to enhance safety to pedestrians crossing either street at an intersection featuring the design since they only encounter through traffic and vehicles making right turns. The left-turning movement, having been eliminated, removes one source of potential vehicle-pedestrian conflict.[1] One minor disadvantage of the Michigan left is the extra distance required for the motorist to drive. Sometimes the distance to the turnaround is as far away as 1⁄4 mile (400 m) past the intersection. This design leads to each motorist driving an additional 1⁄2 mile (800 m) to make a left turn. It also results in left-turning vehicles having to stop up to three times in the execution of the turn.

Driveway

Paving Specialists Price Thru lanes indicated by arrows on California CR G4 (Montague Expressway) in Silicon Valley.

In the context of traffic control, a lane is part of a roadway (carriageway) that is designated for use by a single line of vehicles, to control and guide drivers and reduce traffic conflicts.[1] Most public roads (highways) have at least two lanes, one for traffic in each direction, separated by lane markings. On multilane roadways and busier two-lane roads, lanes are designated with road surface markings. Major highways often have two multi-lane roadways separated by a median.

Some roads and bridges that carry very low volumes of traffic are less than 15 feet (4.6 m) wide, and are only a single lane wide. Vehicles travelling in opposite directions must slow or stop to pass each other. In rural areas, these are often called country lanes. In urban areas, alleys are often only one lane wide. Urban and suburban one lane roads are often designated for one-way traffic.

Lane capacity varies widely due to conditions such as neighboring lanes, lane width, elements next to the road, number of driveways, presence of parking, speed limits, number of heavy vehicles and so on – the range can be as low as 1000 passenger cars / hour to as high as 4800 passenger cars /hour but mostly falls between 1500 and 2400 passenger cars / hour.[2]

The Ontario Highway 401 in the Greater Toronto area, with 17 travel lanes in 6 separate carriageways visible in the midground. Turning lane on the Rodovia BR-101 (Brazil) Play media Changing lanes, Gothenburg, Sweden Transfer lanes, connecting surface collector lanes with through lanes between two tunnels A left-turn merging lane in Germany, needing explanation by a crafted sign These usages lead to the phrases life in the slow lane and life in the fast lane, used to describe relaxed or busy lifestyles, respectively and used as the titles of various books and songs.

While in general, wider lanes are associated with a reduction in crashes,[7] in urban settings both narrow (less than 2.8 m) and wide (over 3.1~3.2 m) lanes increase crash risks.[8] Wider lanes (over 3.3~3.4m) are associated with 33% higher impact speeds, as well as higher crash rates. Carrying capacity is also maximal at a width of 3 to 3.1 metres (9.8 to 10.2 ft), both for motor traffic and for bicycles. Pedestrian volume declines as lanes widen, and intersections with narrower lanes provide the highest capacity for bicycles.[9] As lane width decreases, traffic speed diminishes.[10]

Advocates for safety of people walking and people on bikes, and many new urbanists disagree with traditional thinking in traffic engineering, saying that safety and capacity are not adversely impacted by reducing lanes widths to as little as 10 feet (3.0 m).[11] Moreover, wider travel lanes also increase exposure and crossing distance for pedestrians at intersections and midblock crossings.

assumed widths and heights in road design for Europe (in meters)

The widths of vehicle lanes typically vary from 9 to 15 feet (2.7 to 4.6 m). Lane widths are commonly narrower on low volume roads and wider on higher volume roads. The lane width depends on the assumed maximum vehicle width with an additional space to allow for lateral motion of the vehicle.

The maximum truck width had been 96 inches (2.438 m) in the Code of Federal Regulations of 1956 which matches with the width of eight-foot for shipping containers. This had been increased to 102 inches (2.591 m) in 1976 which explicitly states to be read as the slightly larger metric 2.6 metres (102.36 in) width respecting international harmonization.[12] The same applies to standards in Europe which had increased the allowable size of road vehicles with a current maximum of 2.55 metres (100.39 in) for most trucks and allowing 2.6 metres (102.36 in) for refrigerator trucks. The minimum extra space had been 0.20 metres (7.87 in) and it is currently assumed to be at least 0.25 metres (9.84 in) on each side. For roads with a lower amount of traffic it is allowed to build the second or third lane in the same direction to an assumed lower width for cars like 1.75 metres (68.90 in), however this is not recommended as a design principle for new roads as changes in the amount of traffic could make for unnecessarily increased risks in the future.

The Interstate Highway standards for the U.S. Interstate Highway System uses a 12-foot (3.7 m) standard for lane width, while narrower lanes are used on lower classification roads. In Europe, as laws and road width vary by country, the minimum widths of lanes is generally between 2.5 to 3.25 metres (8.2 to 10.7 ft).[13] The federal Bundesstraße interurban network in Germany defines a minimum of 3.5 metres (11 ft 6 in) for each lane for the smallest two lane roads with an additional 0.25 metres (9.84 in) on the outer sides and shoulders being at least 1.5 metres (59.06 in) on each side. A modern Autobahn divided highway will have two lanes per direction which are 3.75 metres (12 ft 4 in) wide with an additional clearance of 0.50 metres (19.69 in) on each side, while three lanes per direction are set at 3.75 metres (12 ft 4 in) for the rightmost lane and 3.5 metres (11 ft 6 in) for the other lanes. Urban access roads and roads in low-density areas may have lanes as small as 2.75 metres (9 ft 0 in) in width per lane with shoulders being at least 1 metre (3 ft 3 in) wide.[14]

Main article: Road surface marking A typical rural American freeway (Interstate 5 in the Central Valley of California). Notice the yellow line on the left, the dashed white line in the middle, and the solid white line on the right. Also note the rumble strip to the left of the yellow line.

Painted lane markings vary widely from country to country. In the United States, Canada, Mexico, Honduras, Puerto Rico, Virgin Islands and Norway, yellow lines separate traffic going opposite directions and white separates lanes of traffic traveling the same direction, but such is not the case in many European countries.

Lane markings are mostly lines painted on the road by a road marking machine, which can adjust the marking widths according to the lane type.[15]

Traffic reports in California often refer to accidents being "in the number X lane." The California Department of Transportation (Caltrans) assigns the numbers from left to right.[16] The far left passing lane is the number 1 lane. The number of the slow lane (closest to freeway onramps/offramps) depends on the total number of lanes, and could be anywhere from 2 to 8.

For much of human history, roads did not need lane markings because most people walked or rode horses at relatively slow speeds. Another reason for not using lane markings is that they are expensive to maintain.

When automobiles, trucks, and buses came into widespread use during the first two decades of the 20th century, head-on collisions became more common.

Without the guidance provided by lane markings, drivers in the early days often erred in favor of keeping closer to the middle of the road, rather than risk going off-road into ditches or trees[citation needed]. This practice often left inadequate room for opposing traffic.

The history of lane markings is connected to the mass automobile construction in Detroit. It resulted in the formation of the first Road Commission of Wayne County, Michigan in 1906 which was trying to make roads safer (Henry Ford served on the board in the first year).[17] The commission would order the construction of the first concrete road in 1909 (the Woodard Avenue in Detroit) and it conceived the centerline for highways in 1911. Hence the chairmen of the Road Commission, Edward N. Hines is widely credited as the inventor of line markings.[18]

The introduction as a common standard is connected to June McCarroll, a physician in Indio, California who started experimenting with painting lines on roads in 1917 after she was run off a highway by a truck driver. In November 1924, after years of lobbying by Dr. McCarroll and her allies, California officially adopted a policy of painting lines on its highways. A portion of Interstate 10 near Indio has been named the Dr. June McCarroll Memorial Freeway in her honor.

black center line on an Autobahn in Germany (late 1930s)

The first lane markings in Europe were painted at an accident hotspot in the small town of Sutton Coldfield near Birmingham, England in 1921. The success of this experiment made its way to other hotspots and later standardization of white paint for line markings in Great Britain.[19]

The first lane markings in Germany were used in Berlin in 1925 using white paint for line markings and road edge markings. When the standard for the new autobahn network was conceived in the 1930s it mandated the usage of black paint for the center line for each carriageway as black was better visible on the bright surface of the concrete roads.

By 1939, lane markings had become so popular that they were officially standardized throughout the United States. The concept of line markings spread throughout the world becoming standard for most roads. Originally the lines were drawn manually with normal paint which would bleach out quickly. After the war, the first machines for line markings were invented[20] and a plastic strip was becoming standard in the 1950s which led to gradually find line markings on all roads.

Main article: Right- and left-hand traffic Asphalt Driveway Price

https://www.helpwikileaks.co.za/johannesburg-2/

Help Wiki Leaks Have Paving Companies Near Me List

Paving Companies Near Me Johannesburg

How Do You Select The Best Driveway or Paving Companies Near Me?

Driveway to a farm Driveway apron and sloped curb to a public street, all under construction

A driveway (also called drive in UK English) Paving Companies Near Me  in Morningside is a type of private road for local access to one or a small group of structures, and is owned and maintained by an individual or group.

Driveway Paving Contractors Cost Estimate

Driveways rarely have traffic lights, but some that bear heavy traffic, especially those leading to commercial businesses and parks, do.

Driveways may be decorative in ways that public roads cannot, because of their lighter traffic and the willingness of owners to invest in their construction. Driveways are not resurfaced, snow blown or otherwise maintained by governments. They are generally designed to conform to the architecture of connected houses or other buildings.

Asphalt Repair Quotes

Some of the materials that can be used for driveways include concrete, decorative brick, cobblestone, block paving, asphalt, gravel, decomposed granite, and surrounded with grass or other ground-cover plants.

Road surface

Asphalt Repair Price

Driveways are commonly used as paths to private garages, carports, or houses. On large estates, a driveway may be the road that leads to the house from the public road, possibly with a gate in between. Some driveways divide to serve different homeowners. A driveway may also refer to a small apron of pavement in front of a garage with a curb cut in the sidewalk, sometimes too short to accommodate a car.

Asphalt Installation Cost Estimate

Often, either by choice or to conform with local regulations, cars are parked in driveways in order to leave streets clear for traffic. Moreover, some jurisdictions prohibit parking or leaving standing any motor vehicle upon any residential lawn area (defined as the property from the front of a residential house, condominium, or cooperative to the street line other than a driveway, walkway, concrete or blacktopped surface parking space).[2] Other examples include the city of Berkeley, California that forbids “any person to park or leave standing, or cause to be parked or left standing any vehicle upon any public street in the City for seventy-two or more consecutive hours.”[3] Other areas may prohibit leaving vehicles on residential streets during certain times (for instance, to accommodate regular street cleaning), necessitating the use of driveways.

Asphalt

Paver Repair Cost Estimate

Residential driveways are also used for such things as garage sales, automobile washing and repair, and recreation, notably (in North America) for basketball practice.

Another form of driveway is a ‘Run-Up’, or short piece of land used usually at the front of the property to park a vehicle on.[citation needed]

Interesting Facts About Paving Companies Near Me in Duxberry:

About Paving Companies Near Me in Duxberry:

Commercial Paving Price Standard design on a wide median.[1] Stylized depiction of the design in Grand Haven, Michigan, at US 31 and Robbins Road (north to the right), showing the additional area necessary to make a turn on a narrow median.[1] 43°2′40.18″N 86°13′12.57″W / 43.0444944°N 86.2201583°W / 43.0444944; -86.2201583 (US 31 at Robbins Road, Grand Haven, Michigan)

A Michigan left is an at-grade intersection design which replaces each left turn with a U-turn and a right turn. The design was given the name due to its frequent use along roads and highways in the U.S. state of Michigan since the late 1960s.[2] In other contexts, the intersection is called a median U-turn crossover or median U-turn.[1][3] The design is also sometimes referred to as a boulevard left,[4] a boulevard turnaround,[5] a Michigan loon[6] or a "ThrU Turn" intersection.[7][8]

Two versions of signs posted along an intersecting road or street at an intersection. Top: most commonly used; Bottom: lesser-used variant.

The design occurs at intersections where at least one road is a divided highway or boulevard, and left turns onto—and usually from—the divided highway are prohibited. In almost every case, the divided highway is multi-laned in both directions. When on the secondary road, drivers are directed to turn right. Within 1⁄4 mile (400 m), they queue into a designated U-turn (or cross-over) lane in the median.

When traffic clears they complete the U-turn and go back through the intersection. Additionally, the U-turn lane is designed for one-way traffic. Similarly, traffic on the divided highway cannot turn left at an intersection with a cross street. Instead, drivers are instructed to "overshoot" the intersection, go through the U-turn lane, come back to the intersection from the opposite direction, and turn right.

When vehicles enter the cross-over area, unless markings on the ground indicate two turning lanes in the cross-over, drivers form one lane. A cross-over with two lanes is designed at high-volume cross-overs, or when the right lane turns onto an intersecting street. In this case, the right lane is reserved for vehicles completing the design. Most crossovers must be made large enough for semi-trailer trucks to complete the crossover. This large cross-over area often leads to two vehicles incorrectly lining up at a single cross-over.

The maneuver forces the driver to quickly merge into the extreme left lane to complete the turn, usually from a complete stop. The turning vehicle is potentially a hazard and may cause a disruption in the flow of traffic in the left lane.[citation needed]

When the median of a road is too narrow to allow for a standard Michigan left maneuver, a variation can be used which widens the pavement in the opposite direction of travel. This widened pavement is known as a "bulb out"[7] or a "loon" (from the pavement's aerial resemblance to the aquatic bird).[6] Such a design is sometimes referred to as a Michigan loon; in Utah, as a ThrU Turn, which is a portmanteau combining the terms "Through" (the intersection, followed by a) "U Turn".[7]

In 2013, Michigan lefts were installed in Alabama for the first time, in several locations along heavily traveled U.S. Route 280 in metro Birmingham.[9]

Tucson, Arizona, began introducing Michigan lefts in 2013, at Ina/Oracle and Grant/Oracle. Their reception has been mixed.[10]

The design is relatively common in New Orleans, Louisiana, and its suburb Metairie, where city boulevards may be split by streetcar tracks,[11] and suburban thoroughfares are often split by drainage canals.[12] Some intersections using this design are signed similarly to those in Michigan, but with more descriptive text,[13] however in some cases the only signage is "No Left Turn" and drivers are left to figure it out for themselves.[14]

Since the redevelopment of the intersection between University Boulevard (MD 193) and Colesville Road (US 29) in Silver Spring, Maryland, a Michigan left has been used to increase efficiency of traffic through an otherwise underdeveloped and congested intersection. Due to its proximity to the Capital Beltway, heavy traffic is handled more safely and efficiently.[citation needed]

A typical Michigan left layout: Telegraph Road (US 24) at Warren Road near Detroit, showing Michigan lefts 42°20′28″N 83°16′23″W / 42.341°N 83.273°W / 42.341; -83.273 (US 24 (Telegraph Road) at Warren Road, Dearborn, Michigan)

The Michigan Department of Transportation first used the modern design at the intersection of 8 Mile Road (M-102) and Livernois Avenue[15] (42°26′46″N 83°08′28″W / 42.4461°N 83.141°W / 42.4461; -83.141 (M-102 (8 Mile Road) at Livernois Avenue))[16] in Detroit in the early 1960s. The increase in traffic flow and reduction in accidents was so dramatic (a 30–60% decrease[17]) that over 700 similar intersections have been deployed throughout the state since then.[18]

North Carolina has been implementing Michigan lefts along US 17 in the southeastern part of the state, outside Wilmington.[18] In 2015, a Michigan left was constructed at the intersection of Poplar Tent Road and Derita Road in the Charlotte suburb of Concord.[citation needed]

Columbus, Ohio introduced a Michigan left at the intersection of SR 161 and Strawberry Farms Boulevard in 2012. Reception has been mixed with several accidents occurring per year.[citation needed]

At least two Michigan lefts have existed in Texas. One was located at the intersection of Fondren Road and Bellaire Boulevard in Houston from the 1980s through 2007, when it was replaced with conventional left-turn lanes. Another was built in mid-2010 in Plano at the intersection of Preston Road and Legacy Drive.[19] In January 2014, the city announced plans to revert the turn to a traditional intersection as a result of drivers' confusion.[citation needed] A section of State Highway 71 east of Austin-Bergstrom International Airport at FM 973 in Austin, Texas did have a signalized Michigan U-turn which was constructed in 2014—this was a temporary fix until the SH71 tollway over SH130 (including the re-routing of FM973) was completed in early 2016.[citation needed] There are multiple Michigan left turns currently being used along US 281 north of Loop 1604 in San Antonio. These were adopted as a short-term solution for traffic issues as development expanded north, but will likely be phased out as US 281 is elevated.[citation needed]

The city of Draper, Utah, a suburb of Salt Lake City, announced in 2011 that it would be building Utah's first "ThrU Turn" at the intersection of 12300 South and State Street, just off Interstate 15 through Salt Lake County. Construction began in summer 2011 and was completed in fall 2011.[7][20][21] Other similar intersections were implemented in South Jordan[22] and Layton.[23]

In Australia, where traffic drives on the left, the Victorian state government introduced the "P-turn", similar to the Michigan left, at one intersection in 2009. This requires right-turning vehicles to turn left then make a U-turn. As of May 2015, the intersection in the southeastern Melbourne suburb of Frankston remains the only one of its kind in the state, and local residents have called for its removal.[24]

A similar style P-turn is used in the junction of the A4 Great West Road and A3002 Boston Manor Road in Brentford, England.

The design has been proposed in Toronto, Ontario, to relieve motorists who wish to make a left-turn on roadways which will contain a proposed streetcar line by the Transit City project.

In Ottawa, Ontario, a Michigan left exists to proceed from Riverside Drive, northbound, to Bank Street northbound.

Another Michigan left exists in Windsor, Ontario, on Huron Church Road, just north of the E.C. Row Expressway, where a narrow-median variant put in place years ago is now seldom used due to the realignment of the expressway in conjunction with the construction of the Herb Gray Parkway.

In Mexico, Guadalajara has a grade-separated variation of this setup in the intersection of Mariano Otero Avenue and Manuel Gómez Morín Beltway (20°37′50″N 103°26′06″W / 20.630666°N 103.434981°W / 20.630666; -103.434981).[25] Traffic flowing through Mariano Otero is routed through an overpass above the beltway, with two access roads allowing right turn on all four possible directions; the U-turns, meanwhile, are built underneath the beltway and allow the left turn from Mariano Otero avenue to the beltway. U-turn intersections are very common throughout Mexico, particularly in Mexico City.

Brazil is also known to utilize this setup especially in São Paulo.

This is the design at some busy junctions in Hong Kong. In Hong Kong Island examples include the junction of Fleming Road and Harbour Road in Wan Chai North, and the junction of Hennessey Road and Canal Road Flyover in Wong Nai Chung. In Kowloon this design exists between Cheong Wan Road and Hong Chong Road/Salisbury Road.

The capital city of Angola, Luanda, makes widespread use of a simplified variant of this type of intersection on its two- and three-lane, median-separated throughways instead of using traffic lights. Larger junctions use this intersection type instead of much more costly grade-separated interchanges.

This type of intersection configuration, as with any engineered solution to a traffic problem, carries with it certain advantages and disadvantages and has been subject to several studies.

Studies[by whom?][when?] have shown a major reduction in left-turn collisions and a minor reduction in merging and diverging collisions, due to the shifting of left turns outside the main intersection[clarification needed].[1] In addition, it reduces the number of different traffic light phases, significantly increasing traffic flow. Because separate phases are no longer needed for left turns, this increases green time for through traffic. The effect on turning traffic is mixed.[1] Consequently, the timing of traffic signals along a highway featuring the design is made easier by the elimination of left-turn phases both on that highway and along intersecting roadways contributing to the reduction of travel times and the increased capacity of those roadways.[1]

It has been shown to enhance safety to pedestrians crossing either street at an intersection featuring the design since they only encounter through traffic and vehicles making right turns. The left-turning movement, having been eliminated, removes one source of potential vehicle-pedestrian conflict.[1] One minor disadvantage of the Michigan left is the extra distance required for the motorist to drive. Sometimes the distance to the turnaround is as far away as 1⁄4 mile (400 m) past the intersection. This design leads to each motorist driving an additional 1⁄2 mile (800 m) to make a left turn. It also results in left-turning vehicles having to stop up to three times in the execution of the turn.

Paving Companies Near Me in Duxberry

Paving Specialists Near Me Moderate to severe Fatigue cracking.

Crocodile cracking, also called alligator cracking and perhaps misleadingly fatigue cracking, is a common type of distress in asphalt pavement. The following is more closely related to fatigue cracking which is characterized by interconnecting or interlaced cracking in the asphalt layer resembling the hide of a crocodile.[1] Cell sizes can vary in size up to 11.80 inches (300 mm) across, but are typically less than 5.90 inches (150 mm) across. Fatigue cracking is generally a loading failure,[1] but numerous factors can contribute to it. It is often a sign of sub-base failure, poor drainage, or repeated over-loadings. It is important to prevent fatigue cracking, and repair as soon as possible, as advanced cases can be very costly to repair and can lead to formation of potholes or premature pavement failure.

It is usually studied under the transportation section of civil engineering.

Fatigue cracking is an asphalt pavement distress most often instigated by failure of the surface due to traffic loading. However, fatigue cracking can be greatly influenced by environmental and other effects while traffic loading remains the direct cause. Frequently, overloading happens because the base or subbase inadequately support the surface layer and subsequently cannot handle loads that it would normally endure.[2] There are many ways that the subbase or base can be weakened.

Poor drainage in the road bed is a frequent cause of this degradation of the base or subgrade.[1] A heavy spring thaw, similarly to poor drainage, can weaken the base course, leading to fatigue cracking.[1]

Stripping or raveling is another possible cause of fatigue cracking. Stripping occurs when poor adhesion between asphalt and aggregate allows the aggregate at the surface to dislodge. If left uncorrected, this reduces the thickness of the pavement, reducing the affected portion's ability to carry its designed loading.[1] This can cause fatigue cracking to develop rapidly, as overloading will happen with loads of less magnitude or frequency.

Edge cracking is the formation of crescent-shaped cracks near the edge of a road.[3] It is caused by lack of support of the road edge, sometimes due to poorly drained or weak shoulders. If left untreated, additional cracks will form until it resembles fatigue cracking.[3] Like wheel-path fatigue cracking, poor drainage is a main cause of edge cracking, as it weakens the base, which hastens the deterioration of the pavement.[4] Water ponding (a buildup of water which can also be called puddling) happens more frequently near the edge than in the center of the road path, as roads are usually sloped to prevent in-lane ponding. This leads to excess moisture in the shoulders and subbase at the road edge. Edge cracking differs from fatigue cracking in that the cracks form from the top down, where fatigue cracks usually start at the bottom and propagate to the surface.

Fatigue cracking manifests itself initially as longitudinal cracking (cracks along the direction of the flow of traffic) in the top layer of the asphalt.[5] These cracks are initially thin and sparsely distributed. If further deterioration is allowed, these longitudinal cracks are connected by transverse cracks to form sharp sided, prismatic pieces. This interlaced cracking pattern resembles the scales on the back of a crocodile or alligator, hence the nickname, crocodile cracking.

More severe cases involve pumping of fines, spalling, and loose pieces of pavement. The most severe cases of fatigue cracking often occur with other pavement distresses, but are exemplified by: potholes,[1] large cracks(3/8" or larger), and severely spalled edges.[4]

There are many different ways to measure fatigue cracking, but in general a pavement distress manual or index will be used. For example, the Pavement Condition Index is widely used to quantify the overall level of distress and condition of a section of road. Measurement of fatigue cracking specifically (and pavement distress in general) is necessary to determine the overall condition of a road, and for determination of a time-line for rehabilitation and/or repair. There are many other rating systems, and many rating systems currently in use are based on the AASHO Road Test.

There are two important criteria to take into account when measuring fatigue cracking. The first is the extent of the cracking. This is the amount of road surface area which is affected by this pavement distress. The second criterion is the severity of the cracking.[6] Severity, which has been discussed above, refers to how far the cracking has progressed, and is often directly a function of crack width.[6] Severity may be rated numerically, or given a rating from "low" to "severe". The rating may be entered into a pavement management system, which will suggest a priority and method for the repair.

Systems have been developed that detect fatigue cracking and other types of pavement distress automatically.[7] They measure the severity and frequency of alligator cracking on the road-path. One such machine is the road surface profilometer, which is mounted on a vehicle and measures the profile of the road surface while it is moving down the roadway.

Preventing fatigue cracking can be as simple as preventing the common causes. For example, reducing overloading on an asphalt pavement or improving drainage[2] can prevent fatigue cracking in many cases. Prevention primarily depends on designing and constructing the pavement and subbase to support the expected traffic loads, and providing good drainage to keep water out of the subbase.

A good strategy to prevent overloading, which is a main cause of fatigue cracking, is to increase the depth of the asphalt layer. According to certain researchers, pavements that exceed a certain minimum strength or thickness can hypothetically handle infinitely many loads without showing structural defects, including fatigue cracking.[1] These pavements are called perpetual pavements or long-term performance pavements (LTPP).

When repairing pavement affected by fatigue cracking, the main cause of the distress should be determined. However, often the specific cause is fairly difficult to determine, and prevention is therefore correspondingly difficult. Any investigation should involve digging a pit or coring the pavement and subbase to determine the pavement's structural makeup as well as determining whether or not subsurface moisture is a contributing factor.[1] The repair needed also differs based on the severity and extent of the cracking.

In the early stages, sealing cracks with crack sealant limits further deterioration of the subgrade due to moisture penetration. Small areas may be repaired by removal of the affected area, and replacement with new base and asphalt surface.[2] Once the damage has progressed or the affected area is large and extensive, a structural asphalt overlay or complete reconstruction is necessary to ensure structural integrity. Proper repair may include first sealing cracks with crack sealant, installing paving fabric over a tack coat, or milling the damaged asphalt. An overlay of hot mix asphalt is then placed over the completed repair. [2]

Bleeding (roads)

Asphalt Installation Cost Estimate Standard design on a wide median.[1] Stylized depiction of the design in Grand Haven, Michigan, at US 31 and Robbins Road (north to the right), showing the additional area necessary to make a turn on a narrow median.[1] 43°2′40.18″N 86°13′12.57″W / 43.0444944°N 86.2201583°W / 43.0444944; -86.2201583 (US 31 at Robbins Road, Grand Haven, Michigan)

A Michigan left is an at-grade intersection design which replaces each left turn with a U-turn and a right turn. The design was given the name due to its frequent use along roads and highways in the U.S. state of Michigan since the late 1960s.[2] In other contexts, the intersection is called a median U-turn crossover or median U-turn.[1][3] The design is also sometimes referred to as a boulevard left,[4] a boulevard turnaround,[5] a Michigan loon[6] or a "ThrU Turn" intersection.[7][8]

Two versions of signs posted along an intersecting road or street at an intersection. Top: most commonly used; Bottom: lesser-used variant.

The design occurs at intersections where at least one road is a divided highway or boulevard, and left turns onto—and usually from—the divided highway are prohibited. In almost every case, the divided highway is multi-laned in both directions. When on the secondary road, drivers are directed to turn right. Within 1⁄4 mile (400 m), they queue into a designated U-turn (or cross-over) lane in the median.

When traffic clears they complete the U-turn and go back through the intersection. Additionally, the U-turn lane is designed for one-way traffic. Similarly, traffic on the divided highway cannot turn left at an intersection with a cross street. Instead, drivers are instructed to "overshoot" the intersection, go through the U-turn lane, come back to the intersection from the opposite direction, and turn right.

When vehicles enter the cross-over area, unless markings on the ground indicate two turning lanes in the cross-over, drivers form one lane. A cross-over with two lanes is designed at high-volume cross-overs, or when the right lane turns onto an intersecting street. In this case, the right lane is reserved for vehicles completing the design. Most crossovers must be made large enough for semi-trailer trucks to complete the crossover. This large cross-over area often leads to two vehicles incorrectly lining up at a single cross-over.

The maneuver forces the driver to quickly merge into the extreme left lane to complete the turn, usually from a complete stop. The turning vehicle is potentially a hazard and may cause a disruption in the flow of traffic in the left lane.[citation needed]

When the median of a road is too narrow to allow for a standard Michigan left maneuver, a variation can be used which widens the pavement in the opposite direction of travel. This widened pavement is known as a "bulb out"[7] or a "loon" (from the pavement's aerial resemblance to the aquatic bird).[6] Such a design is sometimes referred to as a Michigan loon; in Utah, as a ThrU Turn, which is a portmanteau combining the terms "Through" (the intersection, followed by a) "U Turn".[7]

In 2013, Michigan lefts were installed in Alabama for the first time, in several locations along heavily traveled U.S. Route 280 in metro Birmingham.[9]

Tucson, Arizona, began introducing Michigan lefts in 2013, at Ina/Oracle and Grant/Oracle. Their reception has been mixed.[10]

The design is relatively common in New Orleans, Louisiana, and its suburb Metairie, where city boulevards may be split by streetcar tracks,[11] and suburban thoroughfares are often split by drainage canals.[12] Some intersections using this design are signed similarly to those in Michigan, but with more descriptive text,[13] however in some cases the only signage is "No Left Turn" and drivers are left to figure it out for themselves.[14]

Since the redevelopment of the intersection between University Boulevard (MD 193) and Colesville Road (US 29) in Silver Spring, Maryland, a Michigan left has been used to increase efficiency of traffic through an otherwise underdeveloped and congested intersection. Due to its proximity to the Capital Beltway, heavy traffic is handled more safely and efficiently.[citation needed]

A typical Michigan left layout: Telegraph Road (US 24) at Warren Road near Detroit, showing Michigan lefts 42°20′28″N 83°16′23″W / 42.341°N 83.273°W / 42.341; -83.273 (US 24 (Telegraph Road) at Warren Road, Dearborn, Michigan)

The Michigan Department of Transportation first used the modern design at the intersection of 8 Mile Road (M-102) and Livernois Avenue[15] (42°26′46″N 83°08′28″W / 42.4461°N 83.141°W / 42.4461; -83.141 (M-102 (8 Mile Road) at Livernois Avenue))[16] in Detroit in the early 1960s. The increase in traffic flow and reduction in accidents was so dramatic (a 30–60% decrease[17]) that over 700 similar intersections have been deployed throughout the state since then.[18]

North Carolina has been implementing Michigan lefts along US 17 in the southeastern part of the state, outside Wilmington.[18] In 2015, a Michigan left was constructed at the intersection of Poplar Tent Road and Derita Road in the Charlotte suburb of Concord.[citation needed]

Columbus, Ohio introduced a Michigan left at the intersection of SR 161 and Strawberry Farms Boulevard in 2012. Reception has been mixed with several accidents occurring per year.[citation needed]

At least two Michigan lefts have existed in Texas. One was located at the intersection of Fondren Road and Bellaire Boulevard in Houston from the 1980s through 2007, when it was replaced with conventional left-turn lanes. Another was built in mid-2010 in Plano at the intersection of Preston Road and Legacy Drive.[19] In January 2014, the city announced plans to revert the turn to a traditional intersection as a result of drivers' confusion.[citation needed] A section of State Highway 71 east of Austin-Bergstrom International Airport at FM 973 in Austin, Texas did have a signalized Michigan U-turn which was constructed in 2014—this was a temporary fix until the SH71 tollway over SH130 (including the re-routing of FM973) was completed in early 2016.[citation needed] There are multiple Michigan left turns currently being used along US 281 north of Loop 1604 in San Antonio. These were adopted as a short-term solution for traffic issues as development expanded north, but will likely be phased out as US 281 is elevated.[citation needed]

The city of Draper, Utah, a suburb of Salt Lake City, announced in 2011 that it would be building Utah's first "ThrU Turn" at the intersection of 12300 South and State Street, just off Interstate 15 through Salt Lake County. Construction began in summer 2011 and was completed in fall 2011.[7][20][21] Other similar intersections were implemented in South Jordan[22] and Layton.[23]

In Australia, where traffic drives on the left, the Victorian state government introduced the "P-turn", similar to the Michigan left, at one intersection in 2009. This requires right-turning vehicles to turn left then make a U-turn. As of May 2015, the intersection in the southeastern Melbourne suburb of Frankston remains the only one of its kind in the state, and local residents have called for its removal.[24]

A similar style P-turn is used in the junction of the A4 Great West Road and A3002 Boston Manor Road in Brentford, England.

The design has been proposed in Toronto, Ontario, to relieve motorists who wish to make a left-turn on roadways which will contain a proposed streetcar line by the Transit City project.

In Ottawa, Ontario, a Michigan left exists to proceed from Riverside Drive, northbound, to Bank Street northbound.

Another Michigan left exists in Windsor, Ontario, on Huron Church Road, just north of the E.C. Row Expressway, where a narrow-median variant put in place years ago is now seldom used due to the realignment of the expressway in conjunction with the construction of the Herb Gray Parkway.

In Mexico, Guadalajara has a grade-separated variation of this setup in the intersection of Mariano Otero Avenue and Manuel Gómez Morín Beltway (20°37′50″N 103°26′06″W / 20.630666°N 103.434981°W / 20.630666; -103.434981).[25] Traffic flowing through Mariano Otero is routed through an overpass above the beltway, with two access roads allowing right turn on all four possible directions; the U-turns, meanwhile, are built underneath the beltway and allow the left turn from Mariano Otero avenue to the beltway. U-turn intersections are very common throughout Mexico, particularly in Mexico City.

Brazil is also known to utilize this setup especially in São Paulo.

This is the design at some busy junctions in Hong Kong. In Hong Kong Island examples include the junction of Fleming Road and Harbour Road in Wan Chai North, and the junction of Hennessey Road and Canal Road Flyover in Wong Nai Chung. In Kowloon this design exists between Cheong Wan Road and Hong Chong Road/Salisbury Road.

The capital city of Angola, Luanda, makes widespread use of a simplified variant of this type of intersection on its two- and three-lane, median-separated throughways instead of using traffic lights. Larger junctions use this intersection type instead of much more costly grade-separated interchanges.

This type of intersection configuration, as with any engineered solution to a traffic problem, carries with it certain advantages and disadvantages and has been subject to several studies.

Studies[by whom?][when?] have shown a major reduction in left-turn collisions and a minor reduction in merging and diverging collisions, due to the shifting of left turns outside the main intersection[clarification needed].[1] In addition, it reduces the number of different traffic light phases, significantly increasing traffic flow. Because separate phases are no longer needed for left turns, this increases green time for through traffic. The effect on turning traffic is mixed.[1] Consequently, the timing of traffic signals along a highway featuring the design is made easier by the elimination of left-turn phases both on that highway and along intersecting roadways contributing to the reduction of travel times and the increased capacity of those roadways.[1]

It has been shown to enhance safety to pedestrians crossing either street at an intersection featuring the design since they only encounter through traffic and vehicles making right turns. The left-turning movement, having been eliminated, removes one source of potential vehicle-pedestrian conflict.[1] One minor disadvantage of the Michigan left is the extra distance required for the motorist to drive. Sometimes the distance to the turnaround is as far away as 1⁄4 mile (400 m) past the intersection. This design leads to each motorist driving an additional 1⁄2 mile (800 m) to make a left turn. It also results in left-turning vehicles having to stop up to three times in the execution of the turn.

Asphalt Surfacing Company Cost Estimate

Local Blacktop Contractors Florida

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Local Blacktop Contractors in Florida  except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Asphalt Driveway Price

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Driveway Paving Contractors Near Me

The primary use (70%) of asphalt Asphalt Driveway Installation Near Me is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Sidewalk

Paving Specialists Near Me

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Local Blacktop Contractors Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Driveway Paving Contractors Cost Estimate

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Crushed Asphalt Driveway the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Asphalt Construction Quotes

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Michigan left

Paving Specialists Near Me

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

The Paving Company Costs

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Asphalt Construction Quotes

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Driveway Paving Quotes

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Repair Cost Estimate

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Paving Services Price

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Sidewalk

Asphalt Paving Cost Estimate

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Asphalt Paving Cost Estimate

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Residential Paving Companies Quotes

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Asphalt Repair Cost Estimate

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Driveway Pavers Near Me

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Asphalt Construction Quotes

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

The Paving Company Costs

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Paver Repair Quotes

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Bleeding (roads)

Paving Companies Quotes

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Paving Companies Quotes

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Paving Companies Quotes

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Asphalt

Commercial Paving Quotes

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Local Blacktop Contractors in Florida ?

Paver Repair Quotes For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)mən, bˈt(j)mən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.[3] The word is derived from the Ancient Greek ἄσφαλτος ásphaltos.[4]

The primary use (70%) of asphalt is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.[5]

The terms "asphalt" and "bitumen" are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, "asphalt" (or "asphalt cement") is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called "bitumen", and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as "tar", as in the name of the La Brea Tar Pits.

Naturally occurring asphalt is sometimes specified by the term "crude bitumen". Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as "refined bitumen". The Canadian province of Alberta has most of the world's reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.[8]

The word "asphalt" is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning "asphalt/bitumen/pitch",[9] which perhaps derives from ἀ-, "without" and σφάλλω (sfallō), "make fall".[10] The first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English ("asphaltum" and "asphalt"). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the "asphaltic concrete" used to pave roads.

The expression "bitumen" originated in the Sanskrit words jatu, meaning "pitch", and jatu-krit, meaning "pitch creating" or "pitch producing" (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.[12]

In British English, "bitumen" is used instead of "asphalt". The word "asphalt" is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called "tarmac" in common parlance). Bitumen mixed with clay was usually called "asphaltum",[13] but the term is less commonly used today.[citation needed]

In Australian English, "bitumen" is often used as the generic term for road surfaces.

In American English, "asphalt" is equivalent to the British "bitumen". However, "asphalt" is also commonly used as a shortened form of "asphalt concrete" (therefore equivalent to the British "asphalt" or "tarmac").

In Canadian English, the word "bitumen" is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while "asphalt" is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as "dilbit" in the Canadian petroleum industry, while bitumen "upgraded" to synthetic crude oil is known as "syncrude", and syncrude blended with bitumen is called "synbit".[15]

"Bitumen" is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. "Bituminous rock" is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Neither of the terms "asphalt" or "bitumen" should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.[5]

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] "It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large".[17]

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word "tarmac", which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. "Pitch" is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Bitumen also occurs in unconsolidated sandstones known as "oil sands" in Alberta, Canada, and the similar "tar sands" in Utah, US. The Canadian province of Alberta has most of the world's reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.[8]

The world's largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.[21]

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.[19]

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.[22]

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.[21]

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.[26]

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.[27]

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians' primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.[31]

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.[21]

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.[33]

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by "a certain Monsieur d'Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel", and that he proposed to use it in a variety of ways – "principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth", which at that time made the water unusable. "He expatiates also on the excellence of this material for forming level and durable terraces" in palaces, "the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation".[34]

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used "for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes". Its rise in Europe was "a sudden phenomenon", after natural deposits were found "in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)", although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.[36]

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon's Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.[38]

The first British patent for the use of asphalt was "Cassell's patent asphalte or bitumen" in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also "instrumental in introducing the asphalte pavement (in 1836)".[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.[36]

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge.[35][44][45][46] Claridge's Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain "Asphalte in its natural state from the mine at Pyrimont Seysell in France",[47]—"laid one of the first asphalt pavements in Whitehall".[48] Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,[47][49] "and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park".[49] "The formation in 1838 of Claridge's Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry".[45] "By the end of 1838, at least two other companies, Robinson's and the Bastenne company, were in production",[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge's Whitehall paving "continue(d) in good order".[51]

In 1838, there was a flurry of entrepreneurial activity involving asphalt, which had uses beyond paving. For example, asphalt could also be used for flooring, damp proofing in buildings, and for waterproofing of various types of pools and baths, both of which were also proliferating in the 19th century.[3][35][52] On the London stockmarket, there were various claims as to the exclusivity of asphalt quality from France, Germany and England. And numerous patents were granted in France, with similar numbers of patent applications being denied in England due to their similarity to each other. In England, "Claridge's was the type most used in the 1840s and 50s".[50]

In 1914, Claridge's Company entered into a joint venture to produce tar-bound macadam,[53] with materials manufactured through a subsidiary company called Clarmac Roads Ltd.[54] Two products resulted, namely Clarmac, and Clarphalte, with the former being manufactured by Clarmac Roads and the latter by Claridge's Patent Asphalte Co., although Clarmac was more widely used.[55][note 1] However, the First World War ruined the Clarmac Company, which entered into liquidation in 1915.[57][58] The failure of Clarmac Roads Ltd had a flow-on effect to Claridge's Company, which was itself compulsorily wound up,[59] ceasing operations in 1917,[60][61] having invested a substantial amount of funds into the new venture, both at the outset[59] and in a subsequent attempt to save the Clarmac Company.[57]

The first use of bitumen in the New World was by indigenous peoples. On the west coast, as early as the 13th century, the Tongva, Luiseño and Chumash peoples collected the naturally occurring bitumen that seeped to the surface above underlying petroleum deposits. All three groups used the substance as an adhesive. It is found on many different artifacts of tools and ceremonial items. For example, it was used on rattles to adhere gourds or turtle shells to rattle handles. It was also used in decorations. Small round shell beads were often set in asphaltum to provide decorations. It was used as a sealant on baskets to make them watertight for carrying water, possibly poisoning those who drank the water.[62] Asphalt was used also to seal the planks on ocean-going canoes.

Asphalt was first used to pave streets in the 1870s. At first naturally occurring "bituminous rock" was used, such as at Ritchie Mines in Macfarlan in Ritchie County, West Virginia from 1852 to 1873. In 1876, asphalt-based paving was used to pave Pennsylvania Avenue in Washington DC, in time for the celebration of the national centennial.[63] In the horse-drawn era, streets were unpaved and covered with dirt or gravel. However, that produced uneven wear, opened new hazards for pedestrians and made for dangerous potholes for bicycles and for motor vehicles. Manhattan alone had 130,000 horses in 1900, pulling streetcars, wagons, and carriages, and leaving their waste behind. They were not fast, and pedestrians could dodge and scramble their way across the crowded streets. Small towns continued to rely on dirt and gravel, but larger cities wanted much better streets. They looked to wood or granite blocks by the 1850s.[64] In 1890, a third of Chicago's 2000 miles of streets were paved, chiefly with wooden blocks, which gave better traction than mud. Brick surfacing was a good compromise, but even better was asphalt paving, which was easy to install and to cut through to get at sewers. With London and Paris serving as models, Washington laid 400,000 square yards of asphalt paving by 1882; it became the model for Buffalo, Philadelphia and elsewhere. By the end of the century, American cities boasted 30 million square yards of asphalt paving, well ahead of brick.[65] The streets became faster and more dangerous so electric traffic lights were installed. Electric trolleys (at 12 miles per hour) became the main transportation service for middle class shoppers and office workers until they bought automobiles after 1945 and commuted from more distant suburbs in privacy and comfort on asphalt highways.[66]

See also: Bitumount and History of the petroleum industry in Canada (oil sands and heavy oil)

Canada has the world's largest deposit of natural bitumen in the Athabasca oil sands, and Canadian First Nations along the Athabasca River had long used it to waterproof their canoes. In 1719, a Cree named Wa-Pa-Su brought a sample for trade to Henry Kelsey of the Hudson’s Bay Company, who was the first recorded European to see it. However, it wasn't until 1787 that fur trader and explorer Alexander MacKenzie saw the Athabasca oil sands and said, "At about 24 miles from the fork (of the Athabasca and Clearwater Rivers) are some bituminous fountains into which a pole of 20 feet long may be inserted without the least resistance."[21]

The value of the deposit was obvious from the start, but the means of extracting the bitumen was not. The nearest town, Fort McMurray, Alberta, was a small fur trading post, other markets were far away, and transportation costs were too high to ship the raw bituminous sand for paving. In 1915, Sidney Ells of the Federal Mines Branch experimented with separation techniques and used the product to pave 600 feet of road in Edmonton, Alberta. Other roads in Alberta were paved with material extracted from oil sands, but it was generally not economic. During the 1920s Dr. Karl A. Clark of the Alberta Research Council patented a hot water oil separation process and entrepreneur Robert C. Fitzsimmons[67] built the Bitumount oil separation plant, which between 1925 and 1958 produced up to 300 barrels (50 m3) per day of bitumen using Dr. Clark's method. Most of the bitumen was used for waterproofing roofs, but other uses included fuels, lubrication oils, printers ink, medicines, rust- and acid-proof paints, fireproof roofing, street paving, patent leather, and fence post preservatives.[21] Eventually Fitzsimmons ran out of money and the plant was taken over by the Alberta government. Today the Bitumount plant is a Provincial Historic Site.[68]

Bitumen was used in early photographic technology. In 1826 or 1827, it was used by French scientist Joseph Nicéphore Niépce to make the oldest surviving photograph from nature. The bitumen was thinly coated onto a pewter plate which was then exposed in a camera. Exposure to light hardened the bitumen and made it insoluble, so that when it was subsequently rinsed with a solvent only the sufficiently light-struck areas remained. Many hours of exposure in the camera were required, making bitumen impractical for ordinary photography, but from the 1850s to the 1920s it was in common use as a photoresist in the production of printing plates for various photomechanical printing processes.[69][70]

Bitumen was the nemesis of many artists during the 19th century. Although widely used for a time, it ultimately proved unstable for use in oil painting, especially when mixed with the most common diluents, such as linseed oil, varnish and turpentine. Unless thoroughly diluted, bitumen never fully solidifies and will in time corrupt the other pigments with which it comes into contact. The use of bitumen as a glaze to set in shadow or mixed with other colors to render a darker tone resulted in the eventual deterioration of many paintings, for instance those of Delacroix. Perhaps the most famous example of the destructiveness of bitumen is Théodore Géricault's Raft of the Medusa (1818–1819), where his use of bitumen caused the brilliant colors to degenerate into dark greens and blacks and the paint and canvas to buckle.[71]

The vast majority of refined asphalt is used in construction: primarily as a constituent of products used in paving and roofing applications. According to the requirements of the end use, asphalt is produced to specification. This is achieved either by refining or blending. It is estimated that the current world use of asphalt is approximately 102 million tonnes per year. Approximately 85% of all the asphalt produced is used as the binder in asphalt concrete for roads. It is also used in other paved areas such as airport runways, car parks and footways. Typically, the production of asphalt concrete involves mixing fine and coarse aggregates such as sand, gravel and crushed rock with asphalt, which acts as the binding agent. Other materials, such as recycled polymers (e.g., rubber tyres), may be added to the asphalt to modify its properties according to the application for which the asphalt is ultimately intended.

A further 10% of global asphalt production is used in roofing applications, where its waterproofing qualities are invaluable. The remaining 5% of asphalt is used mainly for sealing and insulating purposes in a variety of building materials, such as pipe coatings, carpet tile backing and paint. Asphalt is applied in the construction and maintenance of many structures, systems, and components, such as the following:

Main article: Asphalt concrete

The largest use of asphalt is for making asphalt concrete for road surfaces; this accounts for approximately 85% of the asphalt consumed in the United States. Asphalt concrete pavement mixes are typically composed of 5% asphalt cement and 95% aggregates (stone, sand, and gravel). Due to its highly viscous nature, asphalt cement must be heated so it can be mixed with the aggregates at the asphalt mixing facility. The temperature required varies depending upon characteristics of the asphalt and the aggregates, but warm-mix asphalt technologies allow producers to reduce the temperature required. There are about 4,000 asphalt concrete mixing plants in the US, and a similar number in Europe.[72]

When maintenance is performed on asphalt pavements, such as milling to remove a worn or damaged surface, the removed material can be returned to a facility for processing into new pavement mixtures. The asphalt in the removed material can be reactivated and put back to use in new pavement mixes.[73] With some 95% of paved roads being constructed of or surfaced with asphalt,[74] a substantial amount of asphalt pavement material is reclaimed each year. According to industry surveys conducted annually by the Federal Highway Administration and the National Asphalt Pavement Association, more than 99% of the asphalt removed each year from road surfaces during widening and resurfacing projects is reused as part of new pavements, roadbeds, shoulders and embankments.[75]

Asphalt concrete paving is widely used in airports around the world. Due to the sturdiness and ability to be repaired quickly, it is widely used for runways.

Further information: Fibre mastic asphalt

Mastic asphalt is a type of asphalt that differs from dense graded asphalt (asphalt concrete) in that it has a higher asphalt (binder) content, usually around 7–10% of the whole aggregate mix, as opposed to rolled asphalt concrete, which has only around 5% asphalt. This thermoplastic substance is widely used in the building industry for waterproofing flat roofs and tanking underground. Mastic asphalt is heated to a temperature of 210 °C (410 °F) and is spread in layers to form an impervious barrier about 20 millimeters (0.8 inches) thick.

A number of technologies allow asphalt to be mixed at much lower temperatures. These involve mixing with petroleum solvents to form "cutbacks" with reduced melting point or mixing with water to turn the asphalt into an emulsion. Asphalt emulsions contain up to 70% asphalt and typically less than 1.5% chemical additives. There are two main types of emulsions with different affinity for aggregates, cationic and anionic. Asphalt emulsions are used in a wide variety of applications. Chipseal involves spraying the road surface with asphalt emulsion followed by a layer of crushed rock, gravel or crushed slag. Slurry seal involves the creation of a mixture of asphalt emulsion and fine crushed aggregate that is spread on the surface of a road. Cold-mixed asphalt can also be made from asphalt emulsion to create pavements similar to hot-mixed asphalt, several inches in depth, and asphalt emulsions are also blended into recycled hot-mix asphalt to create low-cost pavements.

Main article: Synthetic crude oil See also: Petroleum production in Canada

Synthetic crude oil, also known as syncrude, is the output from a bitumen upgrader facility used in connection with oil sand production in Canada. Bituminous sands are mined using enormous (100 ton capacity) power shovels and loaded into even larger (400 ton capacity) dump trucks for movement to an upgrading facility. The process used to extract the bitumen from the sand is a hot water process originally developed by Dr. Karl Clark of the University of Alberta during the 1920s. After extraction from the sand, the bitumen is fed into a bitumen upgrader which converts it into a light crude oil equivalent. This synthetic substance is fluid enough to be transferred through conventional oil pipelines and can be fed into conventional oil refineries without any further treatment. By 2015 Canadian bitumen upgraders were producing over 1 million barrels (160×10^3 m3) per day of synthetic crude oil, of which 75% was exported to oil refineries in the United States.[76]

In Alberta, five bitumen upgraders produce synthetic crude oil and a variety of other products: The Suncor Energy upgrader near Fort McMurray, Alberta produces synthetic crude oil plus diesel fuel; the Syncrude Canada, Canadian Natural Resources, and Nexen upgraders near Fort McMurray produce synthetic crude oil; and the Shell Scotford Upgrader near Edmonton produces synthetic crude oil plus an intermediate feedstock for the nearby Shell Oil Refinery.[77] A sixth upgrader, under construction in 2015 near Redwater, Alberta, will upgrade half of its crude bitumen directly to diesel fuel, with the remainder of the output being sold as feedstock to nearby oil refineries and petrochemical plants.[78]

See also: Western Canadian Select

Canadian bitumen does not differ substantially from oils such as Venezuelan extra-heavy and Mexican heavy oil in chemical composition, and the real difficulty is moving the extremely viscous bitumen through oil pipelines to the refinery. Many modern oil refineries are extremely sophisticated and can process non-upgraded bitumen directly into products such as gasoline, diesel fuel, and refined asphalt without any preprocessing. This is particularly common in areas such as the US Gulf coast, where refineries were designed to process Venezuelan and Mexican oil, and in areas such as the US Midwest where refineries were rebuilt to process heavy oil as domestic light oil production declined. Given the choice, such heavy oil refineries usually prefer to buy bitumen rather than synthetic oil because the cost is lower, and in some cases because they prefer to produce more diesel fuel and less gasoline.[77] By 2015 Canadian production and exports of non-upgraded bitumen exceeded that of synthetic crude oil at over 1.3 million barrels (210×10^3 m3) per day, of which about 65% was exported to the United States.[76]

Because of the difficulty of moving crude bitumen through pipelines, non-upgraded bitumen is usually diluted with natural-gas condensate in a form called dilbit or with synthetic crude oil, called synbit. However, to meet international competition, much non-upgraded bitumen is now sold as a blend of multiple grades of bitumen, conventional crude oil, synthetic crude oil, and condensate in a standardized benchmark product such as Western Canadian Select. This sour, heavy crude oil blend is designed to have uniform refining characteristics to compete with internationally marketed heavy oils such as Mexican Mayan or Arabian Dubai Crude.[77]

Asphalt was used starting in the 1960s as an hydrophobic matrix aiming to encapsulate radioactive waste such as medium-activity salts (mainly soluble sodium nitrate and sodium sulfate) produced by the reprocessing of spent nuclear fuels or radioactive sludges from sedimentation ponds.[79][80] Bituminised radioactive waste containing highly radiotoxic alpha-emitting transuranic elements from nuclear reprocessing plants have been produced at industrial scale in France, Belgium and Japan, but this type of waste conditioning has been abandoned because operational safety issues (risks of fire, as occurred in a bituminisation plant at Tokai Works in Japan)[81][82] and long-term stability problems related to their geological disposal in deep rock formations. One of the main problem is the swelling of asphalt exposed to radiation and to water. Asphalt swelling is first induced by radiation because of the presence of hydrogen gas bubbles generated by alpha and gamma radiolysis.[83][84] A second mechanism is the matrix swelling when the encapsulated hygroscopic salts exposed to water or moisture start to rehydrate and to dissolve. The high concentration of salt in the pore solution inside the bituminised matrix is then responsible for osmotic effects inside the bituminised matrix. The water moves in the direction of the concentrated salts, the asphalt acting as a semi-permeable membrane. This also causes the matrix to swell. The swelling pressure due to osmotic effect under constant volume can be as high as 200 bar. If not properly managed, this high pressure can cause fractures in the near field of a disposal gallery of bituminised medium-level waste. When the bituminised matrix has been altered by swelling, encapsulated radionuclides are easily leached by the contact of ground water and released in the geosphere. The high ionic strength of the concentrated saline solution also favours the migration of radionuclides in clay host rocks. The presence of chemically reactive nitrate can also affect the redox conditions prevailing in the host rock by establishing oxidizing conditions, preventing the reduction of redox-sensitive radionuclides. Under their higher valences, radionuclides of elements such as selenium, technetium, uranium, neptunium and plutonium have a higher solubility and are also often present in water as non-retarded anions. This makes the disposal of medium-level bituminised waste very challenging.

Different type of asphalt have been used: blown bitumen (partly oxidized with air oxygen at high temperature after distillation, and harder) and direct distillation bitumen (softer). Blown bitumens like Mexphalte, with a high content of saturated hydrocarbons, are more easily biodegraded by microorganisms than direct distillation bitumen, with a low content of saturated hydrocarbons and a high content of aromatic hydrocarbons.[85]

Concrete encapsulation of radwaste is presently considered a safer alternative by the nuclear industry and the waste management organisations.

Roofing shingles account for most of the remaining asphalt consumption. Other uses include cattle sprays, fence-post treatments, and waterproofing for fabrics. Asphalt is used to make Japan black, a lacquer known especially for its use on iron and steel, and it is also used in paint and marker inks by some exterior paint supply companies to increase the weather resistance and permanence of the paint or ink, and to make the color darker.[86] Asphalt is also used to seal some alkaline batteries during the manufacturing process.

Typical asphalt plant for making asphalt

About 40,000,000 tons were produced in 1984.[needs update] It is obtained as the "heavy" (i.e., difficult to distill) fraction. Material with a boiling point greater than around 500 °C is considered asphalt. Vacuum distillation separates it from the other components in crude oil (such as naphtha, gasoline and diesel). The resulting material is typically further treated to extract small but valuable amounts of lubricants and to adjust the properties of the material to suit applications. In a de-asphalting unit, the crude asphalt is treated with either propane or butane in a supercritical phase to extract the lighter molecules, which are then separated. Further processing is possible by "blowing" the product: namely reacting it with oxygen. This step makes the product harder and more viscous.[5]

Asphalt is typically stored and transported at temperatures around 150 °C (302 °F). Sometimes diesel oil or kerosene are mixed in before shipping to retain liquidity; upon delivery, these lighter materials are separated out of the mixture. This mixture is often called "bitumen feedstock", or BFS. Some dump trucks route the hot engine exhaust through pipes in the dump body to keep the material warm. The backs of tippers carrying asphalt, as well as some handling equipment, are also commonly sprayed with a releasing agent before filling to aid release. Diesel oil is no longer used as a release agent due to environmental concerns.

Main article: Oil sands

Naturally occurring crude bitumen impregnated in sedimentary rock is the prime feed stock for petroleum production from "oil sands", currently under development in Alberta, Canada. Canada has most of the world's supply of natural bitumen, covering 140,000 square kilometres[14] (an area larger than England), giving it the second-largest proven oil reserves in the world. The Athabasca oil sands are the largest bitumen deposit in Canada and the only one accessible to surface mining, although recent technological breakthroughs have resulted in deeper deposits becoming producible by in situ methods. Because of oil price increases after 2003, producing bitumen became highly profitable, but as a result of the decline after 2014 it became uneconomic to build new plants again. By 2014, Canadian crude bitumen production averaged about 2.3 million barrels (370,000 m3) per day and was projected to rise to 4.4 million barrels (700,000 m3) per day by 2020.[15] The total amount of crude bitumen in Alberta that could be extracted is estimated to be about 310 billion barrels (50×10^9 m3),[8] which at a rate of 4,400,000 barrels per day (700,000 m3/d) would last about 200 years.

Main articles: Peak oil, Global warming, and Bioasphalt

Although uncompetitive economically, asphalt can be made from nonpetroleum-based renewable resources such as sugar, molasses and rice, corn and potato starches. Asphalt can also be made from waste material by fractional distillation of used motor oil, which is sometimes otherwise disposed of by burning or dumping into landfills. Use of motor oil may cause premature cracking in colder climates, resulting in roads that need to be repaved more frequently.[87]

Nonpetroleum-based asphalt binders can be made light-colored. Lighter-colored roads absorb less heat from solar radiation, reducing their contribution to the urban heat island effect.[88] Parking lots that use asphalt alternatives are called green parking lots.

Selenizza is a naturally occurring solid hydrocarbon bitumen found in native deposits in Selenice, in Albania, the only European asphalt mine still in use. The bitumen is found in the form of veins, filling cracks in a more or less horizontal direction. The bitumen content varies from 83% to 92% (soluble in carbon disulphide), with a penetration value near to zero and a softening point (ring and ball) around 120 °C. The insoluble matter, consisting mainly of silica ore, ranges from 8% to 17%.

Albanian bitumen extraction has a long history and was practiced in an organized way by the Romans. After centuries of silence, the first mentions of Albanian bitumen appeared only in 1868, when the Frenchman Coquand published the first geological description of the deposits of Albanian bitumen. In 1875, the exploitation rights were granted to the Ottoman government and in 1912, they were transferred to the Italian company Simsa. Since 1945, the mine was exploited by the Albanian government and from 2001 to date, the management passed to a French company, which organized the mining process for the manufacture of the natural bitumen on an industrial scale.[89]

Today the mine is predominantly exploited in an open pit quarry but several of the many underground mines (deep and extending over several km) still remain viable. Selenizza is produced primarily in granular form, after melting the bitumen pieces selected in the mine.

Selenizza[90] is mainly used as an additive in the road construction sector. It is mixed with traditional asphalt to improve both the viscoelastic properties and the resistance to ageing. It may be blended with the hot asphalt in tanks, but its granular form allows it to be fed in the mixer or in the recycling ring of normal asphalt plants. Other typical applications include the production of mastic asphalts for sidewalks, bridges, car-parks and urban roads as well as drilling fluid additives for the oil and gas industry. Selenizza is available in powder or in granular material of various particle sizes and is packaged in sacks or in thermal fusible polyethylene bags.

A life-cycle assessment study of the natural selenizza compared with petroleum asphalt has shown that the environmental impact of the selenizza is about half the impact of the road asphalt produced in oil refineries in terms of carbon dioxide emission.[91]

People can be exposed to asphalt in the workplace by breathing in fumes or skin absorption. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit of 5 mg/m3 over a 15-minute period.[92]

Asphalt is basically an inert material that must be heated or diluted to a point where it becomes workable for the production of materials for paving, roofing, and other applications. In examining the potential health hazards associated with asphalt, the International Agency for Research on Cancer (IARC) determined that it is the application parameters, predominantly temperature, that affect occupational exposure and the potential bioavailable carcinogenic hazard/risk of the asphalt emissions.[93] In particular, temperatures greater than 199 °C (390 °F), were shown to produce a greater exposure risk than when asphalt was heated to lower temperatures, such as those typically used in asphalt pavement mix production and placement.[94] IARC has classified asphalt as a Class 2B possible carcinogen.

An asphalt mixing plant for hot aggregate
  1. ^ "bitumen Meaning in the Cambridge English Dictionary". dictionary.cambridge.org. 
  2. ^ "American Heritage Dictionary". 
  3. ^ a b c d e Abraham, Herbert (1938). Asphalts and Allied Substances: Their Occurrence, Modes of Production, Uses in the Arts, and Methods of Testing (4th ed.). New York: D. Van Nostrand Co. Retrieved 16 November 2009.  Full text at Internet Archive (archive.org)
  4. ^ asphalt Archived 9 March 2016 at the Wayback Machine., Chambers 21st Century Dictionary
  5. ^ a b c Anja Sörensen and Bodo Wichert "Asphalt and Bitumen" in Ullmann's Encyclopedia of Industrial Chemistry Wiley-VCH, Weinheim, 2009. doi:10.1002/14356007.a03_169.pub2http://www.qrpoil.com/site/?bitumen
  6. ^ "Oil Sands – Glossary". Oil Sands Royalty Guidelines. Government of Alberta. 2008. Archived from the original on 1 November 2007. Retrieved 2 February 2008. 
  7. ^ Walker, Ian C. (1998), Marketing Challenges for Canadian Bitumen (PDF), Tulsa, OK: International Centre for Heavy Hydrocarbons, archived from the original (PDF) on 2012-03-13, Bitumen has been defined by various sources as crude oil with a dynamic viscosity at reservoir conditions of more than 10,000 centipoise. Canadian "bitumen" supply is more loosely accepted as production from the Athabasca, Wabasca, Peace River and Cold Lake oil-sands deposits. The majority of the oil produced from these deposits has an API gravity of between 8° and 12° and a reservoir viscosity of over 10,000 centipoise although small volumes have higher API gravities and lower viscosities. 
  8. ^ a b c "ST98-2015: Alberta's Energy Reserves 2014 and Supply/Demand Outlook 2015–2024" (PDF). Statistical Reports (ST). Alberta Energy Regulator. 2015. Retrieved 19 January 2016. 
  9. ^ ἄσφαλτος, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  10. ^ σφάλλω, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  11. ^ Herodotus, The Histories, 1.179.4, on Perseus
  12. ^ Abraham, Herbert (1938), p.1
  13. ^ Béguin, André. "A technical dictionary of printmaking – Bitumen". www.polymetaal.nl. Retrieved 27 January 2016. 
  14. ^ a b "What is Oil Sands". Alberta Energy. 2007. Archived from the original on 5 February 2016. Retrieved 10 January 2008. 
  15. ^ a b "2007 Canadian Crude Oil Forecast and Market Outlook". Canadian Association of Petroleum Producers. June 2007. Archived from the original on February 26, 2014. Retrieved 30 May 2008. 
  16. ^ Muhammad Abdul Quddus (1992). "Catalytic Oxidation of Asphalt". Thesis submitted to Department of Applied Chemistry; University of Karachi. Pakistan: Higher Education Commission Pakistan: Pakistan Research Repository. p. 6, in ch.2 pdf. Archived from the original on 5 February 2011. 
  17. ^ Muhammad Abdul Quddus (1992), p.99, in ch.5 pdf
  18. ^ Speight, James G. (2015). Asphalt Materials Science and Technology. Elsevier Science. p. 82. ISBN 978-0-12-800501-9. 
  19. ^ a b Bunger, J.; Thomas, K.; Dorrence, S. (1979). "Compound types and properties of Utah and Athabasca tar sand bitumens". Fuel. 58 (3): 183–195. doi:10.1016/0016-2361(79)90116-9. 
  20. ^ Selby, D.; Creaser, R. (2005). "Direct radiometric dating of hydrocarbon deposits using rhenium-osmium isotopes". Science. 308 (5726): 1293–1295. Bibcode:2005Sci...308.1293S. doi:10.1126/science.1111081. PMID 15919988. 
  21. ^ a b c d e "Facts about Alberta's oil sands and its industry" (PDF). Oil Sands Discovery Centre. Archived from the original (PDF) on 23 November 2015. Retrieved 19 January 2015. 
  22. ^ T. Boden and B. Tripp (2012). Gilsonite veins of the Uinta Basin, Utah. Utah, US: Utah Geological Survey, Special Study 141. 
  23. ^ Hayatsu; et al. Meteoritics. 18: 310. CS1 maint: Untitled periodical (link)
  24. ^ Kim; Yang. Journal of Astronomy and Space Sciences. 15 (1): 163–174. CS1 maint: Untitled periodical (link)
  25. ^ McIntosh, Jane. The Ancient Indus Valley. p. 57
  26. ^ Herodotus, Book I, 179
  27. ^ Abraham, Herbert (1920). Asphalts And Allied Substances. D. Van Nostrand. 
  28. ^ Pringle, Heather Anne (2001). The Mummy Congress: Science, Obsession, and the Everlasting Dead. New York, NY: Barnes & Noble Books. pp. 196–197. ISBN 0-7607-7151-0. 
  29. ^ Pedanius Dioscorides. De Materia Medica. . Original written ca. 40 AD, translated by Goodyer (1655) [1] or (Greek/Latin) compiled by Sprengel (1829) [2] p. 100 (p. 145 in PDF).
  30. ^ Connan, Jacques; Nissenbaum, Arie (2004). "The organic geochemistry of the Hasbeya asphalt (Lebanon): comparison with asphalts from the Dead Sea area and Iraq". Organic Geochemistry. 35 (6): 775–789. doi:10.1016/j.orggeochem.2004.01.015. ISSN 0146-6380. 
  31. ^ Arie Nissenbaum (May 1978). "Dead Sea Asphalts—Historical Aspects [free abstract]". AAPG Bulletin. 62 (5): 837–844. doi:10.1306/c1ea4e5f-16c9-11d7-8645000102c1865d. 
  32. ^ The Megalithic Portal and Megalith Map. "C.Michael Hogan (2008) ''Morro Creek'', ed. by A. Burnham". Megalithic.co.uk. Retrieved 27 August 2013. 
  33. ^ Africa and the Discovery of America, Volume 1, page 183, Leo Wiener, BoD – Books on Demand, 1920 reprinted in 2012, ISBN 978-3864034329
  34. ^ "Nothing New under the Sun (on French asphaltum use in 1621)". The Mechanic's magazine, museum, register, journal and gazette. 29. London: W.A. Robertson. 7 April – 29 September 1838. p. 176. 
  35. ^ a b c d Miles, Lewis (2000). "Section 10.6: Damp Proofing". in Australian Building: A Cultural Investigation (PDF). p. 10.06.1. Archived from the original (PDF) on 15 December 2010. Retrieved 11 November 2009. . Note: different sections of Miles' online work were written in different years, as evidenced at the top of each page (not including the heading page of each section). This particular section appears to have been written in 2000
  36. ^ a b R.J. Forbes (1958), Studies in Early Petroleum History, Leiden, Netherlands: E.J. Brill, p. 24, retrieved 10 June 2010 
  37. ^ Salmon, William (1673). Polygraphice; Or, The Arts of Drawing, Engraving, Etching, Limning, Painting, Washing, Varnishing, Gilding, Colouring, Dying, Beautifying and Perfuming (Second ed.). London: R. Jones. p. 81. 
  38. ^ Salmon, William (1685), Polygraphice; Or, The Arts of Drawing, Engraving, Etching, Limning, Painting, Washing, Varnishing, Gilding, Colouring, Dying, Beautifying and Perfuming (5th ed.), London: R. Jones, pp. 76–77, retrieved 18 August 2010  Text at Internet Archive
  39. ^ "Specification of the Patent granted to Richard Tappin Claridge, of the County of Middlesex, for a Mastic Cement, or Composition applicable to Paving and Road making, covering Buildings and various purposes". Journal of the Franklin Institute of the State of Pennsylvania and Mechanics' Register. Vol. 22. London: Pergamon Press. July 1838. pp. 414–418. Retrieved 18 November 2009. 
  40. ^ "Comments on asphalt patents of R.T. Claridge, Esq". Notes and Queries: A medium of intercommunication for Literary Men, General Readers, etc. Ninth series. Volume XII, July–December, 1903 (9th S. XII, 4 July 1903). London: John C. Francis. 20 January 1904. pp. 18–19.  Writer is replying to note or query from previous publication, cited as 9th S. xi. 30
  41. ^ "Obituary of Frederick Walter Simms". Monthly Notices of the Royal Astronomical Society. London: Strangeways & Walden. XXVI: 120–121. November 1865 – June 1866. Retrieved 12 November 2009. 
  42. ^ Broome, D.C. (1963). "The development of the modern asphalt road". The Surveyor and municipal and county engineer. London. 122 (3278 & 3279): 1437–1440 & 1472–1475Snippet view: Simms & Claridge p.1439 
  43. ^ Phipson, Dr T. Lamb (1902). Confessions of a Violinist: Realities and Romance. London: Chatto & Windus. p. 11. Retrieved 26 November 2009.  Full text at Internet Archive (archive.org)
  44. ^ "Claridge's UK Patents in 1837 & 1838". The London Gazette. 25 February 1851. p. 489. 
  45. ^ a b Hobhouse, Hermione (General Editor) (1994). "British History Online". 'Northern Millwall: Tooke Town', Survey of London: volumes 43 and 44: Poplar, Blackwall and Isle of Dogs. pp. 423–433 (see text at refs 169 & 170). Retrieved 8 November 2009. 
  46. ^ "Claridge's Scottish and Irish Patents in 1838". The Mechanic's magazine, museum, register, journal and gazette. 29. London: W.A. Robertson. 7 April – 29 September 1838. pp. vii, viii, 64, 128. 
  47. ^ a b "Joint Stock Companies (description of asphalte use by Claridge's company)". The Civil Engineer and Architects Journal. Vol. 1. London. October 1837 – December 1838. p. 199. Retrieved 16 November 2009.  Full text at Internet Archive (archive.org). Alternative viewing at: https://books.google.com/books?id=sQ5AAAAAYAAJ&pg
  48. ^ Miles, Lewis (2000), pp.10.06.1–2
  49. ^ a b Comments on asphalt patents of R.T. Claridge, Esq (1904), p.18
  50. ^ a b Miles, Lewis (2000), p.10.06.2
  51. ^ "1838 bitumen UK uses by Robinson's and Claridge's companies, & the Bastenne company". The Mechanic's magazine, museum, register, journal and gazette. 29. London: W.A. Robertson. 22 September 1838. p. 448. 
  52. ^ Gerhard, W.M. Paul (1908). Modern Baths and Bath Houses (1st ed.). New York: John Wiley and Sons.  (Enter "asphalt" into the search field for list of pages discussing the subject)
  53. ^ "Claridge's Patent Asphalte Co. ventures into tarred slag macadam", Concrete and Constructional Engineering, London, IX (1): 760, January 1914, retrieved 15 June 2010 
  54. ^ "Registration of Clarmac Roads", The Law Reports: Chancery Division, Vol. 1: 544–547, 1921, retrieved 17 June 2010 
  55. ^ "Clarmac and Clarphalte", The Building News and Engineering Journal, Vol. 109: July to December 1915 (No. 3157): 2–4 (n13–15 in electronic page field), 7 July 1915, retrieved 18 June 2010 
  56. ^ Roads laid with Clarmac The Building News and Engineering Journal, 1915 109 (3157), p.3 (n14 in electronic field).
  57. ^ a b Clarmac financial difficults due to WW1 Debentures deposited The Law Reports: Chancery Division, (1921) Vol. 1 p.545. Retrieved 17 June 2010.
  58. ^ "Notice of the Winding up of Clarmac Roads", The London Gazette (29340): 10568, 26 October 1915, retrieved 15 June 2010 
  59. ^ a b Claridge's Patent Asphalte Co. compulsorily wound up Funds invested in new company The Law Times Reports (1921) Vol.125, p.256. Retrieved 15 June 2010.
  60. ^ "Claridge's Patent Asphalte Co. winds up 10 November 1917". The London Gazette. 16 November 1917. p. 11863. 
  61. ^ Hobhouse, Hermione (General Editor) (1994). "British History Online". 'Cubitt Town: Riverside area: from Newcastle Drawdock to Cubitt Town Pier', Survey of London: volumes 43 and 44: Poplar, Blackwall and Isle of Dogs. pp. 528–532 (see text at refs 507 & 510). Retrieved 8 November 2009. 
  62. ^ Stockton, Nick (23 June 2017). "Plastic Water Bottles Might Have Poisoned Ancient Californians". Wired. Retrieved 26 June 2017. 
  63. ^ McNichol, Dan (2005). Paving the Way: Asphalt in America. Lanham, MD: National Asphalt Pavement Association. ISBN 0-914313-04-5. Archived from the original on 2006-08-29. 
  64. ^ David O. Whitten, "A Century of Parquet Pavements: Wood as a Paving Material In The United States And Abroad, 1840-1940." Essays in Economic and Business History 15 (1997): 209-26.
  65. ^ Arthur Maier Schlesinger, The Rise of the City: 1878-1898 (1933) p 88-93.
  66. ^ John D. Fairfield, "Rapid Transit: Automobility and Settlement in Urban America" Reviews in American History 23#1 (1995), pp. 80-85 online.
  67. ^ "Robert C. Fitzsimmons (1881–1971)". Canadian Petroleum Hall of Fame. 2010. Retrieved 2016-01-20. 
  68. ^ "Bitumount". Government of Alberta. 2016. Retrieved 2016-01-20. 
  69. ^ Niépce Museum history pages. Retrieved 27 October 2012. Archived 3 August 2007 at the Wayback Machine.
  70. ^ The First Photograph (Harry Ransom Center, University of Texas at Austin). Retrieved 27 October 2012.
  71. ^ Spiegelman, Willard (2009-08-21). "Revolutionary Romanticism: 'The Raft of the Medusa' brought energy to French art". The Wall Street Journal. New York City. Retrieved 2016-01-27. 
  72. ^ The Asphalt Paving Industry: A Global Perspective, 2nd Edition (PDF). Lanham, Maryland, and Brussels: National Asphalt Pavement Association and European Asphalt Pavement Association. February 2011. ISBN 0-914313-06-1. Retrieved 27 September 2012. 
  73. ^ "How Should We Express RAP and RAS Contents?". Asphalt Technology E-News. 26 (2). 2014. Archived from the original on 9 June 2015. Retrieved 2015-08-13. 
  74. ^ "Highway Statistics Series: Public Road Length Miles by Type of Surface and Ownership". Federal Highway Administration. 2013-10-01. Retrieved 2015-08-13. 
  75. ^ "Asphalt Pavement Recycling". Annual Asphalt Pavement Industry Survey on Recycled Materials and Warm-Mix Asphalt Usage: 2009–2013. National Asphalt Pavement Association. Retrieved 13 August 2015. 
  76. ^ a b "Crude Oil and Petroleum Products". National Energy Board of Canada. Retrieved January 21, 2016. 
  77. ^ a b c "2015 CAPP Crude Oil Forecast, Markets & Transportation". Canadian Association of Petroleum Producers. Archived from the original on 20 January 2016. Retrieved January 21, 2016. 
  78. ^ "The Project". North West Redwater Partnership. Retrieved January 21, 2016. 
  79. ^ Rodier, J., Scheidhauer, J., & Malabre, M. (1961). The conditioning of radioactive waste by bitumen (No. CEA-R—1992). CEA Marcoule.
  80. ^ Lefillatre, G., Rodier, J., Hullo, R., Cudel, Y., & Rodi, L. (1969). Use of a thin-film evaporator for bitumen coating of radioactive concentrates (No. CEA-R—3742). CEA Marcoule.
  81. ^ Sato, Y., Miura, A., Kato, Y., Suzuki, H., Shigetome, Y., Koyama, T., ... & Yamanouchi, T. (2000). Study on the cause of the fire and explosion incident at Bituminization Demonstration Facility of PNC Tokai Works. In Nuclear waste: from research to industrial maturity. International conference (pp. 179–190).
  82. ^ Okada, K., Nur, R. M., & Fujii, Y. (1999). The formation of explosive compounds in bitumen/nitrate mixtures. Journal of hazardous materials, 69(3), 245–256.
  83. ^ Johnson, D.I., Hitchon, J.W., & Phillips, D.C. (1986). Further observations of the swelling of bitumens and simulated bitumen wasteforms during γ-irradiation (No. AERE-R—12292). UKAEA Harwell Lab. Materials Development Division.
  84. ^ Phillips, D. C., Hitchon, J. W., Johnson, D. I., & Matthews, J. R. (1984). The radiation swelling of bitumens and bitumenised wastes. Journal of nuclear materials, 125(2), 202–218.
  85. ^ Ait-Langomazino, N., Sellier, R., Jouquet, G., & Trescinski, M. (1991). Microbial degradation of bitumen. Experientia, 47(6), 533–539.
  86. ^ Mohd, Meraj Jafri; Singh, D. K. (march 2013). "Cashew Nutshell Liquid Resin" (PDF). IJRREST: International Journal of Research Review in Engineering Science and Technology. 2: 60–65.  Check date values in: |date= (help)
  87. ^ Hesp, Simon A.M.; Herbert F. Shurvell (2010). "X-ray fluorescence detection of waste engine oil residue in asphalt and its effect on cracking in service". International Journal of Pavement Engineering. 11 (6): 541–553. doi:10.1080/10298436.2010.488729. ISSN 1029-8436. Retrieved 2014-03-24. 
  88. ^ Heat Island Effect. From the website of the US Environmental Protection Agency.
  89. ^ Giavarini, Carlo (March 2013). Six Thousand Years of Asphalt. SITEB. pp. 71–78. ISBN 978-88-908408-3-8. 
  90. ^ [3], Selenice Bitumi for more information about Selenizza
  91. ^ Giavarini, C.; Pellegrini, A. "Life cycle assessment of Selenice asphalt compared with petroleum bitumen". The 1st Albanian Congress on Roads: 234–237. 
  92. ^ "CDC – NIOSH Pocket Guide to Chemical Hazards – Asphalt fumes". www.cdc.gov. Retrieved 2015-11-27. 
  93. ^ IARC (2013). Bitumens and Bitumen Emissions, and Some N- and S-Heterocyclic Polycyclic Aromatic Hydrocarbons. 103. Lyon, France: International Agency for Research on Cancer. ISBN 978-92-832-1326-0. Retrieved 2015-12-07. 
  94. ^ Cavallari, J. M.; Zwack, L. M.; Lange, C. R.; Herrick, R. F.; Mcclean, M. D. (2012). "Temperature-Dependent Emission Concentrations of Polycyclic Aromatic Hydrocarbons in Paving and Built-Up Roofing Asphalts". Annals of Occupational Hygiene. 56 (2): 148–160. doi:10.1093/annhyg/mer107 . ISSN 0003-4878. 
  95. ^ "Contacto – Eco Roofing". epdmecoroofing.com. 
  96. ^ "Follow the evolution of the road from path to pavement". 


Macadam

The Paving Company Costs Macadam country road[dubious – discuss]

Macadam is a type of road construction, pioneered by Scottish engineer John Loudon McAdam around 1820, in which single-sized crushed stone layers of small angular stones are placed in shallow lifts and compacted thoroughly. A binding layer of stone dust (crushed stone from the original material) may form; it may also, after rolling, be covered with a binder to keep dust and stones together. The method simplified what had been considered state of the art at that point.

Pierre-Marie-Jérôme Trésaguet is sometimes considered the first person to bring post-Roman science to road building. A Frenchman from an engineering family, he worked paving roads in Paris from 1757 to 1764. As chief engineer of road construction of Limoges, he had opportunity to develop a better and cheaper method of road construction. In 1775, Tresaguet became engineer-general and presented his answer for road improvement in France, which soon became standard practice there.[1]

Trésaguet had recommended a roadway consisting of three layers of stones laid on a crowned subgrade with side ditches for drainage. The first two layers consisted of angular hand-broken aggregate, maximum size 3 inches (7.6 cm), to a depth of about 8 inches (20 cm). The third layer was about 2 inches (5 cm) thick with a maximum aggregate size of 1 inch (2.5 cm).[2] This top level surface permitted a smoother shape and protected the larger stones in the road structure from iron wheels and horse hooves. To keep the running surface level with the countryside, this road was put in a trench, which created drainage problems. These problems were addressed by changes that included digging deep side ditches, making the surface as solid as possible, and constructing the road with a difference in elevation (height) between the two edges, that difference being referred to interchangeably as the road's camber or cross slope.[2]

Laying Telford paving in Aspinwall, Pennsylvania, 1908

Thomas Telford, born in Dumfriesshire Scotland,[3] was a surveyor and engineer who applied Tresaguet's road building theories. In 1801 Telford worked for the British Commission of Highlands Roads and Bridges. He became director of the Holyhead Road Commission between 1815 and 1830. Telford extended Tresaguet's theories, but emphasized high-quality stone. He recognized that some of the road problems of the French could be avoided by using cubical stone blocks.[4]

Telford used roughly 12 in × 10 in × 6 in (30 cm × 25 cm × 15 cm) partially shaped paving stones (pitchers), with a slight flat face on the bottom surface. He turned the other faces more vertically than Tresaguet's method. The longest edge was arranged crossways to the traffic direction, and the joints were broken in the method of conventional brickwork, but with the smallest faces of the pitcher forming the upper and lower surfaces.[4]

Broken stone was wedged into the spaces between the tapered perpendicular faces to provide the layer with good lateral control. Telford kept the natural formation level and used masons to camber the upper surface of the blocks. He placed a 6-inch (15 cm) layer of stone no bigger than 6 cm (2.4 in) on top of the rock foundation. To finish the road surface he covered the stones with a mixture of gravel and broken stone. This structure came to be known as "Telford pitching." Telford's road depended on a resistant structure to prevent water from collecting and corroding the strength of the pavement. Telford raised the pavement structure above ground level whenever possible.

Where the structure could not be raised, Telford drained the area surrounding the roadside. Previous road builders in Britain ignored drainage problems and Telford's rediscovery of these principles was a major contribution to road construction.[5] Though notably of around the same time, John Metcalf was a strong advocate that drainage was in fact an important factor to road construction, and astonished colleagues by building dry roads through marshland. He accomplished this by installing a layer of brushwood and heather.

John Loudon McAdam (1756–1836)[6]

John Loudon McAdam was born in Ayr, Scotland, in 1756. In 1787, he became a trustee of the Ayrshire Turnpike in the Scottish Lowlands and during the next seven years this hobby became an obsession. He moved to Bristol, England, in 1802 and became a Commissioner for Paving in 1806.[7] On 15 January 1816, he was elected Surveyor-General of roads for the Turnpike Trust and was now responsible for 149 miles of road.[7] He then put his ideas about road construction into practice, the first 'macadamised' stretch of road being Marsh Road at Ashton Gate, Bristol.[7] He also began to actively propagate his ideas in two booklets called Remarks (or Observations) on the Present System of Roadmaking, (which ran nine editions between 1816 and 1827) and A Practical Essay on the Scientific Repair and Preservation of Public Roads, published in 1819.[8]

Photograph of macadam road, ca 1850s, Nicolaus, California

McAdam's method was simpler, yet more effective at protecting roadways: he discovered that massive foundations of rock upon rock were unnecessary, and asserted that native soil alone would support the road and traffic upon it, as long as it was covered by a road crust that would protect the soil underneath from water and wear.[9]

Unlike Telford and other road builders of the time, McAdam laid his roads as level as possible. His 30-foot-wide (9.1 m) road required only a rise of 3 inches (7.6 cm) from the edges to the centre. Cambering and elevation of the road above the water table enabled rain water to run off into ditches on either side.[10]

Size of stones was central to the McAdam's road building theory. The lower 20-centimetre (7.9 in) road thickness was restricted to stones no larger than 7.5 centimetres (3.0 in). The upper 5-centimetre (2.0 in) layer of stones was limited to 2 centimetres (0.79 in) size and stones were checked by supervisors who carried scales. A workman could check the stone size himself by seeing if the stone would fit into his mouth. The importance of the 2 cm stone size was that the stones needed to be much smaller than the 10 cm width of the iron carriage tyres that travelled on the road.[5]

McAdam believed that the "proper method" of breaking stones for utility and rapidity was accomplished by people sitting down and using small hammers, breaking the stones so that none of them was larger than six ounces in weight. He also wrote that the quality of the road would depend on how carefully the stones were spread on the surface over a sizeable space, one shovelful at a time.[11]

McAdam directed that no substance that would absorb water and affect the road by frost should be incorporated into the road. Neither was anything to be laid on the clean stone to bind the road. The action of the road traffic would cause the broken stone to combine with its own angles, merging into a level, solid surface that would withstand weather or traffic.[12]

Through his road-building experience, McAdam had learned that a layer of broken angular stones would act as a solid mass and would not require the large stone layer previously used to build roads. Keeping the surface stones smaller than the tyre width made a good running surface for traffic. The small surface stones also provided low stress on the road, so long as it could be kept reasonably dry.[13]

Construction of the first macadamized road in the United States (1823). In the foreground, workers are breaking stones "so as not to exceed 6 ounces [170 g] in weight or to pass a two-inch [5 cm] ring".[14][15][16]

The first macadam road built in the United States was constructed between Hagerstown and Boonsboro, Maryland and was named at the time Boonsborough Turnpike Road. This was the last section of unimproved road between Baltimore on the Chesapeake Bay to Wheeling on the Ohio River. Stagecoaches traveling the Hagerstown to Boonsboro road in the winter took 5 to 7 hours to cover the 10-mile (16 km) stretch.[15][16] This road was completed in 1823, using McAdam's road techniques, except that the finished road was compacted with a cast-iron roller instead of relying on road traffic for compaction.[17][15][16] The second American road built using McAdam principles was the Cumberland Road which was 73 miles (117 km) long and was completed in 1830 after five years of work.[15][16]

McAdam's renown is due to his effective and economical construction, which was a great improvement over the methods used by his generation. He emphasized that roads could be constructed for any kind of traffic, and he helped to alleviate the resentment travelers felt toward increasing traffic on the roads. His legacy lies in his advocacy of effective road maintenance and management. He advocated a central road authority and the trained professional official, who could be paid a salary that would keep him from corruption. This professional could give his entire time to his duties and be held responsible for his actions.[18]

McAdam's road building technology was applied to roads by other engineers. One of these engineers was Richard Edgeworth, who filled the gaps between the surface stones with a mixture of stone dust and water, providing a smoother surface for the increased traffic using the roads.[19] This basic method of construction is sometimes known as water-bound macadam. Although this method required a great deal of manual labour, it resulted in a strong and free-draining pavement. Roads constructed in this manner were described as "macadamized."[19]

New macadam road construction at McRoberts, Kentucky: pouring tar. 1926

With the advent of motor vehicles, dust became a serious problem on macadam roads. The area of low air pressure created under fast-moving vehicles sucked dust from the road surface, creating dust clouds and a gradual unraveling of the road material.[20] This problem was approached by spraying tar on the surface to create tar-bound macadam. On March 13, 1902 in Monaco, a Swiss doctor, Ernest Guglielminetti, came upon the idea of using tar from Monaco's gasworks for binding the dust.[21] Later a mixture of coal tar and ironworks slag, patented by Edgar Purnell Hooley as tarmac, was introduced.

A more durable road surface (modern mixed asphalt pavement) sometimes referred to in the US as blacktop, was introduced in the 1920s. This pavement method mixed the aggregates into the asphalt with the binding material before they were laid. The macadam surface method laid the stone and sand aggregates on the road and then sprayed it with the binding material.[22] While macadam roads have now been resurfaced in most developed countries, some are preserved along stretches of roads such as the United States' National Road.[citation needed]

Because of the historic use of macadam as a road surface, roads in some parts of the United States (as parts of Pennsylvania) are often referred to as macadam, even though they might be made of asphalt or concrete. Similarly, the term "tarmac" is sometimes colloquially misapplied to asphalt roads or aircraft runways.[23]

Driveway Paving Contractors Cost Estimate

https://www.helpwikileaks.co.za/johannesburg-2/

Help Wiki Leaks Have Paving Companies Near Me List

Paving Contractors Near Me Rosebank

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Paving Contractors Near Me in Rosebank except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Driveway Pavers Near Me

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Asphalt Contractors Near Me

The primary use (70%) of asphalt Asphalt Driveway Average Cost is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Brick

Residential Paving Cost Estimate

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Paving Contractors Near Me Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Asphalt Paving Companies Price

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Asphalt Driveway Into Garage the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Asphalt Driveway Price

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Asphalt concrete

Paving Companies Quotes

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Asphalt Driveway Price

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Paving Specialists Price

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Asphalt Paving Price

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Paver Repair Price

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Asphalt Driveway Price

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Lane

Tarmac Driveways Near Me

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Paving Contractors Costs

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Tarmac Driveways Near Me

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Asphalt Installation Price

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Asphalt Road Price

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Paving Services Price

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Asphalt Surfacing Company Cost Estimate

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Asphalt Driveway Repair Price

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Road surface

Asphalt Paving Price

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Residential Paving Cost Estimate

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Driveway Paving Quotes

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Sealcoat

The Paving Company Costs

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Paving Contractors Near Me in Rosebank ?

Asphalt Driveway Repair Quotes Asphalt batch mix plant A machine laying asphalt concrete, fed from a dump truck

Asphalt concrete (commonly called asphalt,[1] blacktop, or pavement in North America, and tarmac or bitumen macadam or rolled asphalt in the United Kingdom and the Republic of Ireland) is a composite material commonly used to surface roads, parking lots, airports, as well as the core of embankment dams.[2] It consists of mineral aggregate bound together with asphalt, laid in layers, and compacted. The process was refined and enhanced by Belgian inventor and U.S. immigrant Edward de Smedt.[3]

The terms asphalt (or asphaltic) concrete, bituminous asphalt concrete, and bituminous mixture are typically used only in engineering and construction documents, which define concrete as any composite material composed of mineral aggregate adhered with a binder. The abbreviation, AC, is sometimes used for asphalt concrete but can also denote asphalt content or asphalt cement, referring to the liquid asphalt portion of the composite material.

As shown in this cross-section, many older roadways are smoothed by applying a thin layer of asphalt concrete to the existing portland cement concrete, creating a composite pavement.

Mixing of asphalt and aggregate is accomplished in one of several ways:[4]

Hot-mix asphalt concrete (commonly abbreviated as HMA) This is produced by heating the asphalt binder to decrease its viscosity, and drying the aggregate to remove moisture from it prior to mixing. Mixing is generally performed with the aggregate at about 300 °F (roughly 150 °C) for virgin asphalt and 330 °F (166 °C) for polymer modified asphalt, and the asphalt cement at 200 °F (95 °C). Paving and compaction must be performed while the asphalt is sufficiently hot. In many countries paving is restricted to summer months because in winter the compacted base will cool the asphalt too much before it is able to be packed to the required density. HMA is the form of asphalt concrete most commonly used on high traffic pavements such as those on major highways, racetracks and airfields. It is also used as an environmental liner for landfills, reservoirs, and fish hatchery ponds.[5] Asphaltic concrete laying machine in operation in Laredo, Texas Warm-mix asphalt concrete (commonly abbreviated as WMA) This is produced by adding either zeolites, waxes, asphalt emulsions, or sometimes even water to the asphalt binder prior to mixing. This allows significantly lower mixing and laying temperatures and results in lower consumption of fossil fuels, thus releasing less carbon dioxide, aerosols and vapors. Not only are working conditions improved, but the lower laying-temperature also leads to more rapid availability of the surface for use, which is important for construction sites with critical time schedules. The usage of these additives in hot mixed asphalt (above) may afford easier compaction and allow cold weather paving or longer hauls. Use of warm mix is rapidly expanding. A survey of US asphalt producers found that nearly 25% of asphalt produced in 2012 was warm mix, a 416% increase since 2009.[6] Cold-mix asphalt concrete This is produced by emulsifying the asphalt in water with (essentially) soap prior to mixing with the aggregate. While in its emulsified state the asphalt is less viscous and the mixture is easy to work and compact. The emulsion will break after enough water evaporates and the cold mix will, ideally, take on the properties of an HMA pavement. Cold mix is commonly used as a patching material and on lesser trafficked service roads. Cut-back asphalt concrete Is a form of cold mix asphalt produced by dissolving the binder in kerosene or another lighter fraction of petroleum prior to mixing with the aggregate. While in its dissolved state the asphalt is less viscous and the mix is easy to work and compact. After the mix is laid down the lighter fraction evaporates. Because of concerns with pollution from the volatile organic compounds in the lighter fraction, cut-back asphalt has been largely replaced by asphalt emulsion.[7] Mastic asphalt concrete, or sheet asphalt This is produced by heating hard grade blown bitumen (i.e., partly oxidised) in a green cooker (mixer) until it has become a viscous liquid after which the aggregate mix is then added. The bitumen aggregate mixture is cooked (matured) for around 6–8 hours and once it is ready the mastic asphalt mixer is transported to the work site where experienced layers empty the mixer and either machine or hand lay the mastic asphalt contents on to the road. Mastic asphalt concrete is generally laid to a thickness of around ​3⁄4–1 ​3⁄16 inches (20–30 mm) for footpath and road applications and around ​3⁄8 of an inch (10 mm) for flooring or roof applications. High-modulus asphalt concrete, sometimes referred to by the French-language acronym EMÉ (enrobé à module élevé) This uses a very hard bituminous (penetration 10/20), sometimes modified, in proportions close to 6% on the weight of the aggregates, and a proportion of mineral powder also high, between 8–10%, to create an asphalt concrete layer with a high modulus of elasticity, of the order of 13000 MPa, as well as very high fatigue strengths.[8] High-modulus asphalt layers are used both in reinforcement operations and in the construction of new reinforcements for medium and heavy traffic. In base layers, they tend to exhibit a greater capacity of absorbing tensions and, in general, better fatigue resistance.[9]

In addition to the asphalt and aggregate, additives, such as polymers, and antistripping agents may be added to improve the properties of the final product.

Asphalt concrete pavements—especially those at airfields—are sometimes called tarmac for historical reasons, although they do not contain tar and are not constructed using the macadam process.

A variety of specialty asphalt concrete mixtures have been developed to meet specific needs, such as stone-matrix asphalt, which is designed to ensure a very strong wearing surface, or porous asphalt pavements, which are permeable and allow water to drain through the pavement for controlling stormwater.

An airport taxiway, one of the uses of asphalt concrete

Different types of asphalt concrete have different performance characteristics in terms of surface durability, tire wear, braking efficiency and roadway noise. In principle, the determination of appropriate asphalt performance characteristics must take into account the volume of traffic in each vehicle category, and the performance requirements of the friction course. Asphalt concrete generates less roadway noise than a Portland cement concrete surface, and is typically less noisy than chip seal surfaces.[10][11]

Because tire noise is generated through the conversion of kinetic energy to sound waves, more noise is produced as the speed of a vehicle increases. The notion that highway design might take into account acoustical engineering considerations, including the selection of the type of surface paving, arose in the early 1970s.[12][13] With regard to structural performance, the asphalt behaviour depends on a variety of factors including the material, loading and environmental condition. Furthermore, the performance of pavement varies over time. Therefore, the long-term behaviour of asphalt pavement is different from its short-term performance. The LTPP is a research program by the FHWA, which is specifically focusing on long-term pavement behaviour.[14][15]

Asphalt damaged by frost heaves

Asphalt deterioration can include crocodile cracking, potholes, upheaval, raveling, bleeding, rutting, shoving, stripping, and grade depressions. In cold climates, frost heaves can crack asphalt even in one winter. Filling the cracks with bitumen is a temporary fix, but only proper compaction and drainage can slow this process.

Factors that cause asphalt concrete to deteriorate over time mostly fall into one of three categories: construction quality, environmental considerations, and traffic loads. Often, damage results from combinations of factors in all three categories.

Construction quality is critical to pavement performance. This includes the construction of utility trenches and appurtenances that are placed in the pavement after construction. Lack of compaction in the surface of the asphalt, especially on the longitudinal joint can reduce the life of a pavement by 30 to 40%. Service trenches in pavements after construction have been said to reduce the life of the pavement by 50%, mainly due to the lack of compaction in the trench, and also because of water intrusion through improperly sealed joints.

Environmental factors include heat and cold, the presence of water in the subbase or subgrade soil underlying the pavement, and frost heaves.

High temperatures soften the asphalt binder, allowing heavy tire loads to deform the pavement into ruts. Paradoxically, high heat and strong sunlight also cause the asphalt to oxidize, becoming stiffer and less resilient, leading to crack formation. Cold temperatures can cause cracks as the asphalt contracts. Cold asphalt is also less resilient and more vulnerable to cracking.

Water trapped under the pavement softens the subbase and subgrade, making the road more vulnerable to traffic loads. Water under the road freezes and expands in cold weather, causing and enlarging cracks. In spring thaw, the ground thaws from the top down, so water is trapped between the pavement above and the still-frozen soil underneath. This layer of saturated soil provides little support for the road above, leading to the formation of potholes. This is more of a problem for silty or clay soils than sandy or gravelly soils. Some jurisdictions pass frost laws to reduce the allowable weight of trucks during the spring thaw season and protect their roads.

The damage a vehicle causes is proportional to the axle load raised to the fourth power,[16] so doubling the weight an axle carries actually causes 16 times as much damage. Wheels cause the road to flex slightly, resulting in fatigue cracking, which often leads to crocodile cracking. Vehicle speed also plays a role. Slowly moving vehicles stress the road over a longer period of time, increasing ruts, cracking, and corrugations in the asphalt pavement.

Other causes of damage include heat damage from vehicle fires, or solvent action from chemical spills.

The life of a road can be prolonged through good design, construction and maintenance practices. During design, engineers measure the traffic on a road, paying special attention to the number and types of trucks. They also evaluate the subsoil to see how much load it can withstand. The pavement and subbase thicknesses are designed to withstand the wheel loads. Sometimes, geogrids are used to reinforce the subbase and further strengthen the roads. Drainage, including ditches, storm drains and underdrains are used to remove water from the roadbed, preventing it from weakening the subbase and subsoil.

Good maintenance practices center on keeping water out of the pavement, subbase and subsoil. Maintaining and cleaning ditches and storm drains will extend the life of the road at low cost. Sealing small cracks with bituminous crack sealer prevents water from enlarging cracks through frost weathering, or percolating down to the subbase and softening it.

For somewhat more distressed roads, a chip seal or similar surface treatment may be applied. As the number, width and length of cracks increases, more intensive repairs are needed. In order of generally increasing expense, these include thin asphalt overlays, multicourse overlays, grinding off the top course and overlaying, in-place recycling, or full-depth reconstruction of the roadway.

It is far less expensive to keep a road in good condition than it is to repair it once it has deteriorated. This is why some agencies place the priority on preventive maintenance of roads in good condition, rather than reconstructing roads in poor condition. Poor roads are upgraded as resources and budget allow. In terms of lifetime cost and long term pavement conditions, this will result in better system performance. Agencies that concentrate on restoring their bad roads often find that by the time they've repaired them all, the roads that were in good condition have deteriorated.[17]

Some agencies use a pavement management system to help prioritize maintenance and repairs.

A small-scale asphalt recycler

Asphalt concrete is 100% recyclable and is the most widely reused construction material in the world. Very little asphalt concrete — less than 1 percent, according to a 2011 survey by the Federal Highway Administration and the National Asphalt Pavement Association — is actually disposed of in landfills.[18]

There is asphalt recycling on a large scale (known as in-place asphalt recycling or asphalt recycling performed at a hot mix plant) and asphalt recycling on a smaller scale. For small scale asphalt recycling, the user separates asphalt material into three different categories:

Blacktop cookies Chunks of virgin uncompacted hot mix asphalt which can be used for pothole repair. The use of blacktop cookies has been investigated as a less expensive, less labor-intensive, more durable alternative to repairing potholes with cold patch. In a program in Pittsfield, Massachusetts, workers purchased new hot mix asphalt and spread it liberally on the ground to produce approximately 25 lb. wafers. Once cooled, the wafers could be stored until reheated in a hotbox to make minor road repairs. Blacktop cookies may also be produced from leftover material from paving jobs.[19] Reclaimed asphalt pavement (RAP) Chunks of asphalt that have been removed from a road, parking lot or driveway are considered RAP. These chunks of asphalt typically are ripped up when making a routine asphalt repair, man hole repair, catch basin repair or sewer main repair. Because the asphalt has been compacted, RAP is a denser asphalt material and typically takes longer to recycle than blacktop cookies. Asphalt millings Small pieces of asphalt produced by mechanically grinding asphalt surfaces are referred to as asphalt millings. Large millings that have a rich, black tint indicating a high asphalt cement content are best for asphalt recycling purposes. Surface millings are recommended over full depth millings when choosing asphalt millings to recycle. Full depth millings usually contain sub-base contaminants such as gravel, mud and sand. These sub base contaminants will leach oil away from original asphalt and dry out the material in the recycling process. Asphalt milled from asphalt is better than asphalt milled from concrete. When milling asphalt from concrete the dust that is created is not compatible with asphalt products because it is not asphalt.[20]

Small scale asphalt recycling will usually involve high speed on-site asphalt recycling equipment or overnight soft heat asphalt recycling.

Small scale asphalt recycling is used when wanting to make smaller road repairs vs. large scale asphalt recycling which is done for making new asphalt or for tearing up old asphalt and simultaneously recycling / replacing existing asphalt. Recycled asphalt is very effective for pothole and utility cut repairs. The recycled asphalt will generally last as long or longer than the road around it as new asphalt cement has been added back to the material.[21]

For larger scale asphalt recycling, several in-place recycling techniques have been developed to rejuvenate oxidized binders and remove cracking, although the recycled material is generally not very water-tight or smooth and should be overlaid with a new layer of asphalt concrete. Cold in-place recycling mills off the top layers of asphalt concrete and mixes the resulting loose millings with asphalt emulsion. The mixture is then placed back down on the roadway and compacted. The water in the emulsion is allowed to evaporate for a week or so, and new hot-mix asphalt is laid on top.

Asphalt concrete that is removed from a pavement is usually stockpiled for later use as aggregate for new hot mix asphalt at an asphalt plant. This reclaimed material, or RAP, is crushed to a consistent gradation and added to the HMA mixing process. Sometimes waste materials, such as asphalt roofing shingles, crushed glass, or rubber from old tires, are added to asphalt concrete as is the case with rubberized asphalt, but there is a concern that the hybrid material may not be recyclable.

Diverging diamond interchange

Pave My Driveway Costs Permeable paving demonstration Stone paving in Santarém, Portugal

Permeable paving is a method of paving vehicle and pedestrian pathways that allows for infiltration of fluids. In pavement design the base is the top portion of the roadway that pedestrians or vehicles come into contact with. The media used for the base of permeable paving may be porous to allow for fluids to flow through it or nonporous media that are spaced so that fluid may flow in between the crack may be used. In addition to reducing surface runoff, permeable paving can trap suspended solids therefore filtering pollutants from stormwater.[1] Examples include roads, paths, and parking lots that are subject to light vehicular traffic, such as cycle-paths, service or emergency access lanes, road and airport shoulders, and residential sidewalks and driveways.

Although some porous paving materials appear nearly indistinguishable from nonporous materials, their environmental effects are qualitatively different. Whether it is pervious concrete, porous asphalt, paving stones or concrete or plastic-based pavers, all these pervious materials allow stormwater to percolate and infiltrate the surface areas, traditionally impervious to the soil below. The goal is to control stormwater at the source, reduce runoff and improve water quality by filtering pollutants in the substrata layers.

Permeable solutions can be based on: porous asphalt and concrete surfaces, concrete pavers (permeable interlocking concrete paving systems – PICP), or polymer-based grass pavers, grids and geocells. Porous pavements and concrete pavers (actually the voids in-between them) enable stormwater to drain through a stone base layer for on-site infiltration and filtering. Polymer based grass grid or cellular paver systems provide load bearing reinforcement for unpaved surfaces of gravel or turf.

Grass pavers, plastic turf reinforcing grids (PTRG), and geocells (cellular confinement systems) are honeycombed 3D grid-cellular systems, made of thin-walled HDPE plastic or other polymer alloys. These provide grass reinforcement, ground stabilization and gravel retention. The 3D structure reinforces infill and transfers vertical loads from the surface, distributing them over a wider area. Selection of the type of cellular grid depends to an extent on the surface material, traffic and loads. The cellular grids are installed on a prepared base layer of open-graded stone (higher void spacing) or engineered stone (stronger). The surface layer may be compacted gravel or topsoil seeded with grass and fertilizer. In addition to load support, the cellular grid reduces compaction of the soil to maintain permeability, while the roots improve permeability due to their root channels.[2]

In new suburban growth, porous pavements protect watersheds. In existing built-up areas and towns, redevelopment and reconstruction are opportunities to implement stormwater water management practices. Permeable paving is an important component in Low Impact Development (LID), a process for land development in the United States that attempts to minimize impacts on water quality and the similar concept of sustainable drainage systems (SuDS) in the United Kingdom.

The infiltration capacity of the native soil is a key design consideration for determining the depth of base rock for stormwater storage or for whether an underdrain system is needed.

Permeable paving surfaces have been demonstrated as effective in managing runoff from paved surfaces.[3][4] Large volumes of urban runoff causes serious erosion and siltation in surface water bodies. Permeable pavers provide a solid ground surface, strong enough to take heavy loads, like large vehicles, while at the same time they allow water to filter through the surface and reach the underlying soils, mimicking natural ground absorption.[5] They can reduce downstream flooding and stream bank erosion, and maintain base flows in rivers to keep ecosystems self-sustaining. Permeable pavers also combat erosion that occurs when grass is dry or dead, by replacing grassed areas in suburban and residential environments.[6]

Permeable paving surfaces keep the pollutants in place in the soil or other material underlying the roadway, and allow water seepage to groundwater recharge while preventing the stream erosion problems. They capture the heavy metals that fall on them, preventing them from washing downstream and accumulating inadvertently in the environment. In the void spaces, naturally occurring micro-organisms digest car oils, leaving little but carbon dioxide and water. Rainwater infiltration is usually less than that of an impervious pavement with a separate stormwater management facility somewhere downstream.[citation needed].in areas where infiltration is not possible due to unsuitable soil conditions permeable pavements are used in the attenuation mode where water is retained in the pavement and slowly released to surface water systems between storm events.

Permeable pavements may give urban trees the rooting space they need to grow to full size. A "structural-soil" pavement base combines structural aggregate with soil; a porous surface admits vital air and water to the rooting zone. This integrates healthy ecology and thriving cities, with the living tree canopy above, the city's traffic on the ground, and living tree roots below. The benefits of permeables on urban tree growth have not been conclusively demonstrated and many researchers have observed tree growth is not increased if construction practices compact materials before permeable pavements are installed.[7][8]

Permeable pavements are designed to replace Effective Impervious Areas (EIAs), not to manage stormwater from other impervious surfaces on site. Use of this technique must be part of an overall on site management system for stormwater, and is not a replacement for other techniques.

Also, in a large storm event, the water table below the porous pavement can rise to a higher level preventing the precipitation from being absorbed into the ground. The additional water is stored in the open graded crushed drain rock base and remains until the subgrade can absorb the water. For clay-based soils, or other low to 'non'-draining soils, it is important to increase the depth of the crushed drain rock base to allow additional capacity for the water as it waits to be infiltrated.

The best way to prevent this problem is to understand the soil infiltration rate, and design the pavement and base depths to meet the volume of water. Or, allow for adequate rain water run off at the pavement design stage.

Highly contaminated runoff can be generated by some land uses where pollutant concentrations exceed those typically found in stormwater. These "hot spots" include commercial plant nurseries, recycling facilities, fueling stations, industrial storage, marinas, some outdoor loading facilities, public works yards, hazardous materials generators (if containers are exposed to rainfall), vehicle service and maintenance areas, and vehicle and equipment washing and steam cleaning facilities. Since porous pavement is an infiltration practice, it should not be applied at stormwater hot spots due to the potential for groundwater contamination. All contaminated runoff should be prevented from entering municipal storm drain systems by using best management practices (BMPs) for the specific industry or activity.[9]

Reference sources differ on whether low or medium traffic volumes and weights are appropriate for porous pavements. For example, around truck loading docks and areas of high commercial traffic, porous pavement is sometimes cited as being inappropriate. However, given the variability of products available, the growing number of existing installations in North America and targeted research by both manufacturers and user agencies, the range of accepted applications seems to be expanding. Some concrete paver companies have developed products specifically for industrial applications. Working examples exist at fire halls, busy retail complex parking lots, and on public and private roads, including intersections in parts of North America with quite severe winter conditions.

Permeable pavements may not be appropriate when land surrounding or draining into the pavement exceeds a 20 percent slope, where pavement is down slope from buildings or where foundations have piped drainage at their footers. The key is to ensure that drainage from other parts of a site is intercepted and dealt with separately rather than being directed onto permeable surfaces.

Cold climates may present special challenges. Road salt contains chlorides that could migrate through the porous pavement into groundwater. Snow plow blades could catch block edges and damage surfaces. Sand cannot be used for snow and ice control on perveous asphalt or concrete because it will plug the pores and reduce permeability. Infiltrating runoff may freeze below the pavement, causing frost heave, though design modifications can reduce this risk. These potential problems do not mean that porous pavement cannot be used in cold climates. Porous pavement designed to reduce frost heave has been used successfully in Norway. Furthermore, experience suggests that rapid drainage below porous surfaces increases the rate of snow melt above.

Some estimates put the cost of permeable paving at two to three times that of conventional asphalt paving. Using permeable paving, however, can reduce the cost of providing larger or more stormwater BMPs on site, and these savings should be factored into any cost analysis. In addition, the off-site environmental impact costs of not reducing on-site stormwater volumes and pollution have historically been ignored or assigned to other groups (local government parks, public works and environmental restoration budgets, fisheries losses, etc.) The City of Olympia, Washington is studying the use of pervious concrete quite closely and finding that new stormwater regulations are making it a viable alternative to storm water.

Some permeable pavements require frequent maintenance because grit or gravel can block the open pores. This is commonly done by industrial vacuums that suck up all the sediment. If maintenance is not carried out on a regular basis, the porous pavements can begin to function more like impervious surfaces. With more advanced paving systems the levels of maintenance needed can be greatly decreased, elastomerically bound glass pavements requires less maintenance than regular concrete paving as the glass bound pavement has 50% more void space.

Plastic grid systems, if selected and installed correctly, are becoming more and more popular with local government maintenance personnel owing to the reduction in maintenance efforts: reduced gravel migration and weed suppression in public park settings.

Some permeable paving products are prone to damage from misuse, such as drivers who tear up patches of plastic & gravel grid systems by "joy riding" on remote parking lots at night. The damage is not difficult to repair but can look unsightly in the meantime. Grass pavers require supplemental watering in the first year to establish the vegetation, otherwise they may need to be re-seeded. Regional climate also means that most grass applications will go dormant during the dry season. While brown vegetation is only a matter of aesthetics, it can influence public support for this type of permeable paving.

Traditional permeable concrete paving bricks tend to lose their color in relatively short time which can be costly to replace or clean and is mainly due to the problem of efflorescence.

Efflorescence is a hardened crystalline deposit of salts, which migrate from the center of concrete or masonry pavers to the surface to form insoluble calcium carbonates that harden on the surface. Given time, these deposits form much like how a stalactite takes shape in a cave, except in this case on a flat surface. Efflorescence usually appears white, gray or black depending on the region.

Over time efflorescence begins to negatively affect the overall appearance of masonry/concrete and may cause the surfaces to become slippery when exposed to moisture. If left unchecked, this efflorescence will harden whereby the calcium/lime deposits begin to affect the integrity of the cementatious surface by slowly eroding away the cement paste and aggregate. In some cases it will also discolor stained or coated surfaces.

Efflorescence forms more quickly in areas that are exposed to excessive amounts of moisture such as near pool decks, spas, and fountains or where irrigation runoff is present. As a result, these affected regions become very slick when wet thereby causing a significant loss of "friction coefficient". This can be of serious concern especially as a public safety issue to individuals, principals and property owners by exposing them to possible injury and increased general liability claims.

Efflorescence remover chemicals can be used to remove calcium/lime build-up without damaging the integrity of the paving surface.

Installation of porous pavements is no more difficult than that of dense pavements, but has different specifications and procedures which must be strictly adhered to. Nine different families of porous paving materials present distinctive advantages and disadvantages for specific applications. Here are examples:

Main article: Pervious concrete

Pervious concrete is widely available, can bear frequent traffic, and is universally accessible. Pervious concrete quality depends on the installer's knowledge and experience.[10]

Plastic grids allow for a 100% porous system using structural grid systems for containing and stabilizing either gravel or turf. These grids come in a variety of shapes and sizes depending on use; from pathways to commercial parking lots. These systems have been used readily in Europe for over a decade, but are gaining popularity in North America due to requirements by government for many projects to meet LEED environmental building standards. Plastic grid system are also popular with homeowners due to their lower cost to install, ease of installation, and versatility. The ideal design for this type of grid system is a closed cell system, which prevents gravel/sand/turf from migrating laterally.[citation needed] It is also known as Grass pavers / Turf Pavers in India [11]

Porous asphalt is produced and placed using the same methods as conventional asphalt concrete; it differs in that fine (small) aggregates are omitted from the asphalt mixture. The remaining large, single-sized aggregate particles leave open voids that give the material its porosity and permeability. To ensure pavement strength, fiber may be added to the mix or a polymer-modified asphalt binder may be used.[12] Generally, porous asphalt pavements are designed with a subsurface reservoir that holds water that passes through the pavement, allowing it to evaporate and/or percolate slowly into the surround soils.[13][14]

Open-graded friction courses (OGFC) are a porous asphalt surface course used on highways to improve driving safety by removing water from the surface. Unlike a full-depth porous asphalt pavement, OGFCs do not drain water to the base of a pavement. Instead, they allow water to infiltrate the top 3/4 to 1.5 inch of the pavement and then drain out to the side of the roadway. This can improve the friction characteristics of the road and reducing road spray.[15]

Single-sized aggregate without any binder, e.g. loose gravel, stone-chippings, is another alternative. Although it can only be safely used in very low-speed, low-traffic settings, e.g. car-parks and drives, its potential cumulative area is great.[citation needed]

Grass pavement

Porous turf, if properly constructed, can be used for occasional parking like that at churches and stadia. Plastic turf reinforcing grids can be used to support the increased load.[16]:2 [17] Living turf transpires water, actively counteracting the "heat island" with what appears to be a green open lawn.

Main article: interlocking concrete pavers

Permeable interlocking concrete pavements are concrete units with open, permeable spaces between the units.[16]:2 They give an architectural appearance, and can bear both light and heavy traffic, particularly interlocking concrete pavers, excepting high-volume or high-speed roads.[18] Some products are polymer-coated and have an entirely porous face.

Permeable clay brick pavements are fired clay brick units with open, permeable spaces between the units. Clay pavers provide a durable surface that allows stormwater runoff to permeate through the joints.

Main article: Resin bound paving

Resin bound paving is a mixture of resin binder and aggregate. Clear resin is used to fully coat each aggregate particle before laying. Enough resin is used to allow each aggregate particle to adhere to one another and to the base yet leave voids for water to permeate through. Resin bound paving provides a strong and durable surface that is suitable for pedestrian and vehicular traffic in applications such as pathways, driveways, car parks and access roads.

Elastomerically bound recycled glass porous pavement consisting of bonding processed post consumer glass with a mixture of resins, pigments, granite and binding agents. Approximately 75 percent of glass in the U.S. is disposed in landfills.[19][20]

Stormwater management practices related to roadways:


Asphalt Paving Cost Estimate

https://www.helpwikileaks.co.za/johannesburg-2/

Help Wiki Leaks Have Paving Companies Near Me List

Asphalt Paving Near Me Rosebank

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Asphalt Paving Near Me in Rosebank except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Asphalt Contractors Near Me

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Asphalt Contractors Price

The primary use (70%) of asphalt Asphalt Driveway Resurfacing Options is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Asphalt

Asphalt Driveway Price

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Asphalt Paving Near Me Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Commercial Paving Price

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Asphalt Emulsion Companies the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Asphalt Driveway Paving Price

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Boulevard

Asphalt Companies Costs

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Paver Repair Cost Estimate

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Asphalt Contractors Near Me

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Paver Repair Cost Estimate

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Paving Cost Estimate

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Pave My Driveway Quotes

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Crocodile cracking

The Paving Company Costs

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Pave My Driveway Quotes

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Paving Companies Quotes

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

The Paving Company Costs

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Commercial Paving Cost Estimate

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Driveway Paving Quotes

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Paving Companies Near Me

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Asphalt Driveway Paving Price

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Asphalt concrete

The Paving Company Near Me

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Paver Repair Quotes

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Residential Paving Companies Costs

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Diverging diamond interchange

Driveway Pavers Cost Estimate

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Asphalt Paving Near Me in Rosebank ?

Asphalt Contractors Costs A high-speed toll booth on SR 417 near Orlando, Florida, United States. A toll collection area in the United Kingdom. Hong Kong toll booth.

A toll road, also known as a turnpike or tollway, is a public or private road for which a fee (or toll) is assessed for passage. It is a form of road pricing typically implemented to help recoup the cost of road construction and maintenance.

Toll roads have existed in some form since antiquity, with tolls levied on passing travellers on foot, wagon or horseback; but their prominence increased with the rise of the automobile,[citation needed] and many modern tollways charge fees for motor vehicles exclusively. The amount of the toll usually varies by vehicle type, weight, or number of axles, with freight trucks often charged higher rates than cars.

Tolls are often collected at toll booths, toll houses, plazas, stations, bars, or gates. Some toll collection points are unmanned and the user deposits money in a machine which opens the gate once the correct toll has been paid. To cut costs and minimise time delay many tolls today are collected by some form of automatic or electronic toll collection equipment which communicates electronically with a toll payer's transponder. Some electronic toll roads also maintain a system of toll booths so people without transponders can still pay the toll, but many newer roads now use automatic number plate recognition to charge drivers who use the road without a transponder, and some older toll roads are being upgraded with such systems.

Criticisms of toll roads include the time taken to stop and pay the toll, and the cost of the toll booth operators—up to about one third of revenue in some cases. Automated toll paying systems help minimise both of these. Others object to paying "twice" for the same road: in fuel taxes and with tolls.

In addition to toll roads, toll bridges and toll tunnels are also used by public authorities to generate funds to repay the cost of building the structures. Some tolls are set aside to pay for future maintenance or enhancement of infrastructure, or are applied as a general fund by local governments, not being earmarked for transport facilities. This is sometimes limited or prohibited by central government legislation. Also road congestion pricing schemes have been implemented in a limited number of urban areas as a transportation demand management tool to try to reduce traffic congestion and air pollution.[1]

A table of tolls in pre-decimal currency for the College Road, Dulwich, London SE21 tollgate.

Toll roads have existed for at least the last 2,700 years, as tolls had to be paid by travellers using the Susa–Babylon highway under the regime of Ashurbanipal, who reigned in the 7th century BC.[2] Aristotle and Pliny refer to tolls in Arabia and other parts of Asia. In India, before the 4th century BC, the Arthashastra notes the use of tolls. Germanic tribes charged tolls to travellers across mountain passes.

A 14th-century example (though not for a road) is Castle Loevestein in the Netherlands, which was built at a strategic point where two rivers meet. River tolls were charged on boats sailing along the river. The Øresund in Scandinavia was once subject to a toll to the Danish Monarch, which once provided a sizable portion of the king's revenue.

Many modern European roads were originally constructed as toll roads in order to recoup the costs of construction, maintenance and as a source of tax money that is paid primarily by someone other than the local residents. In 14th-century England, some of the most heavily used roads were repaired with money raised from tolls by pavage grants. Widespread toll roads sometimes restricted traffic so much, by their high tolls, that they interfered with trade and cheap transportation needed to alleviate local famines or shortages.[3]

Tolls were used in the Holy Roman Empire in the 14th and 15th centuries.

Industrialisation in Europe needed major improvements to the transport infrastructure which included many new or substantially improved roads, financed from tolls. The A5 road in Britain was built to provide a robust transport link between Britain and Ireland and had a toll house every few miles.

In the 20th century, road tolls were introduced in Europe to finance the construction of motorway networks and specific transport infrastructure such as bridges and tunnels. Italy was the first European country to charge motorway tolls, on a 50 km motorway section near Milan in 1924. It was followed by Greece, which made users pay for the network of motorways around and between its cities in 1927. Later in the 1950s and 1960s, France, Spain and Portugal started to build motorways largely with the aid of concessions, allowing rapid development of this infrastructure without massive State debts. Since then, road tolls have been introduced in the majority of the EU Member States.[4]

In the United States, prior to the introduction of the Interstate Highway System and the large federal grants supplied to states to build it, many states constructed their first controlled-access highways by floating bonds backed by toll revenues. Starting with the Pennsylvania Turnpike in 1940, and followed by similar roads in New Jersey (Garden State Parkway (1946) and New Jersey Turnpike, 1952), New York (New York State Thruway, 1954), Massachusetts (Massachusetts Turnpike, 1957), and others, numerous states throughout the 1950s established major toll roads. With the establishment of the Interstate Highway System in the late 1950s, toll road construction in the U.S. slowed down considerably, as the federal government now provided the bulk of funding to construct new freeways, and regulations required that such Interstate highways be free from tolls. Many older toll roads were added to the Interstate System under a grandfather clause that allowed tolls to continue to be collected on toll roads that predated the system. Some of these such as the Connecticut Turnpike and the Richmond–Petersburg Turnpike later removed their tolls when the initial bonds were paid off. Many states, however, have maintained the tolling of these roads, however, as a consistent source of revenue.

As the Interstate Highway System approached completion during the 1980s, states began constructing toll roads again to provide new controlled-access highways which were not part of the original interstate system funding. Houston's outer beltway of interconnected toll roads began in 1983, and many states followed over the last two decades of the 20th century adding new toll roads, including the tollway system around Orlando, Florida, Colorado's E-470, and Georgia State Route 400.

London, in an effort to reduce traffic within the city, instituted the London congestion charge in 2003, effectively making all roads within the city tolled.

In the United States, as states looked for ways to construct new freeways without federal funding again, to raise revenue for continued road maintenance, and to control congestion, new toll road construction saw significant increases during the first two decades of the 21st century. Spurred on by two innovations, the electronic toll collection system, and the advent of high occupancy and express lane tolls, many areas of the U.S saw large road building projects in major urban areas. Electronic toll collection, first introduced in the 1980s, reduces operating costs by removing toll collectors from roads. Tolled express lanes, by which certain lanes of a freeway are designated "toll only", increases revenue by allowing a free-to-use highway collect revenue by allowing drivers to bypass traffic jams by paying a toll. The E-ZPass system, compatible with many state systems, is the largest ETC system in the U.S., and is used for both fully tolled highways and tolled express lanes. Maryland Route 200 and the Triangle Expressway in North Carolina were the first toll roads built without toll booths, with drivers charged via ETC or by optical license plate recognition and are billed by mail.

19th-century toll booth in Brooklyn, New York Toll bar in Romania, 1877 Plaque commemorating the suppression of toll on a York bridge in 1914. Main article: Toll roads in Great Britain

Turnpike trusts were established in England and Wales from about 1706 in response to the need for better roads than the few and poorly-maintained tracks then available. Turnpike trusts were set up by individual Acts of Parliament, with powers to collect road tolls to repay loans for building, improving, and maintaining the principal roads in Britain. At their peak, in the 1830s, over 1,000 trusts[5] administered around 30,000 miles (48,000 km) of turnpike road in England and Wales, taking tolls at almost 8,000 toll-gates.[6] The trusts were ultimately responsible for the maintenance and improvement of most of the main roads in England and Wales, which were used to distribute agricultural and industrial goods economically. The tolls were a source of revenue for road building and maintenance, paid for by road users and not from general taxation. The turnpike trusts were gradually abolished from the 1870s. Most trusts improved existing roads, but some new roads, usually only short stretches, were also built. Thomas Telford's Holyhead road followed Watling Street from London but was exceptional in creating a largely new route beyond Shrewsbury, and especially beyond Llangollen. Built in the early 19th century, with many toll booths along its length, most of it is now the A5. In the modern day, one major toll road is the M6 Toll, relieving traffic congestion on the M6 in Birmingham. A few notable bridges and tunnels continue as toll roads including the Severn Bridge, the Dartford Crossing and Mersey Gateway bridge.

Some cities in Canada had toll roads in the 19th century. Roads radiating from Toronto required users to pay at toll gates along the street (Yonge Street, Bloor Street, Davenport Road, Kingston Road)[7] and disappeared after 1895.[8]

19th-century plank roads were usually operated as toll roads. One of the first U.S. motor roads, the Long Island Motor Parkway (which opened on October 10, 1908) was built by William Kissam Vanderbilt II, the great-grandson of Cornelius Vanderbilt. The road was closed in 1938 when it was taken over by the state of New York in lieu of back taxes.[9][10]

Main article: Road pricing

Road tolls were levied traditionally for a specific access (e.g. city) or for a specific infrastructure (e.g. roads, bridges). These concepts were widely used until the last century. However, the evolution in technology made it possible to implement road tolling policies based on different concepts. The different charging concepts are designed to suit different requirements regarding purpose of the charge, charging policy, the network to the charge, tariff class differentiation etc.:[11]

Time Based Charges and Access Fees: In a time-based charging regime, a road user has to pay for a given period of time in which they may use the associated infrastructure. For the practically identical access fees, the user pays for the access to a restricted zone for a period or several days.

Motorway and other Infrastructure Tolling: The term tolling is used for charging a well-defined special and comparatively costly infrastructure, like a bridge, a tunnel, a mountain pass, a motorway concession or the whole motorway network of a country. Classically a toll is due when a vehicle passes a tolling station, be it a manual barrier-controlled toll plaza or a free-flow multi-lane station.

Distance or Area Charging: In a distance or area charging system concept, vehicles are charged per total distance driven in a defined area.

Some toll roads charge a toll in only one direction. Examples include the Sydney Harbour Bridge, Sydney Harbour Tunnel and Eastern Distributor (these all charge tolls city-bound) in Australia, the Severn Bridges where the M4 and M48 in Great Britain crosses the River Severn, in the United States, crossings between Pennsylvania and New Jersey operated by Delaware River Port Authority and crossings between New Jersey and New York operated by Port Authority of New York and New Jersey.This technique is practical where the detour to avoid the toll is large or the toll differences are small.

.

Balintawak toll plaza of the North Luzon Expressway in Caloocan, Philippines. The toll barrier has both electronic toll collection and cash payment in the same barrier, before a new toll plaza was added. Tipo toll plaza in Subic–Clark–Tarlac Expressway, Hermosa, Bataan The open road tolling lanes at the West 163rd Street toll plaza, on the Tri-State Tollway near Markham, Illinois, United States

.

Overhead cameras and reader attach to gantry on Highway 407 in Ontario. See also: Electronic toll collection

Traditionally tolls were paid by hand at a toll gate. Although payments may still be made in cash, it is more common now to pay by credit card, by pre-paid card,[citation needed] or by an electronic toll collection system. In some places, payment is made using stickers which are affixed to the windscreen.

Three systems of toll roads exist: open (with mainline barrier toll plazas); closed (with entry/exit tolls) and open road (no toll booths, only electronic toll collection gantries at entrances and exits, or at strategic locations on the mainline of the road). Modern toll roads often use a combination of the three, with various entry and exit tolls supplemented by occasional mainline tolls: for example the Pennsylvania Turnpike and the New York State Thruway implement both systems in different sections.

On an open toll system, all vehicles stop at various locations along the highway to pay a toll. (Not to be confused with "open road tolling", where no vehicles stop to pay toll.) While this may save money from the lack of need to construct toll booths at every exit, it can cause traffic congestion while traffic queues at the mainline toll plazas (toll barriers). It is also possible for motorists to enter an 'open toll road' after one toll barrier and exit before the next one, thus travelling on the toll road toll-free. Most open toll roads have ramp tolls or partial access junctions to prevent this practice, known in the U.S. as "shunpiking".

With a closed system, vehicles collect a ticket when entering the highway. In some cases, the ticket displays the toll to be paid on exit. Upon exit, the driver must pay the amount listed for the given exit. Should the ticket be lost, a driver must typically pay the maximum amount possible for travel on that highway. Short toll roads with no intermediate entries or exits may have only one toll plaza at one end, with motorists traveling in either direction paying a flat fee either when they enter or when they exit the toll road. In a variant of the closed toll system, mainline barriers are present at the two endpoints of the toll road, and each interchange has a ramp toll that is paid upon exit or entry. In this case, a motorist pays a flat fee at the ramp toll and another flat fee at the end of the toll road; no ticket is necessary. In addition, with most systems, motorists may pay tolls only with cash and/or change; debit and credit cards are not accepted. However, some toll roads may have travel plazas with ATMs so motorists can stop and withdraw cash for the tolls.

The toll is calculated by the distance travelled on the toll road or the specific exit chosen. In the United States, for instance, the Kansas Turnpike, Ohio Turnpike, Pennsylvania Turnpike, New Jersey Turnpike, most of the Indiana Toll Road, New York State Thruway, and Florida's Turnpike currently implement closed systems.

The Union Toll Plaza on the Garden State Parkway was the first ever to use an automated toll collection machine. A plaque commemorating the event includes the first quarter collected at its toll booths.[12]

The first major deployment of an RFID electronic toll collection system in the United States was on the Dallas North Tollway in 1989 by Amtech (see TollTag). The Amtech RFID technology used on the Dallas North Tollway was originally developed at Sandia Labs for use in tagging and tracking livestock. In the same year, the Telepass active transponder RFID system was introduced across Italy.

Highway 407 in the province of Ontario, Canada, has no toll booths, and instead reads a transponder mounted on the windshields of each vehicle using the road (the rear licence plates of vehicles lacking a transponder are photographed when they enter and exit the highway). This made the highway the first all-automated toll highway in the world. A bill is mailed monthly for usage of the 407. Lower charges are levied on frequent 407 users who carry electronic transponders in their vehicles. The approach has not been without controversy: In 2003 the 407 ETR settled[13] a class action with a refund to users.

Throughout most of the East Coast of the United States, E-ZPass (operated under the brand I-Pass in Illinois) is accepted on almost all toll roads. Similar systems include SunPass in Florida, FasTrak in California, Good to Go in Washington State, and ExpressToll in Colorado. The systems use a small radio transponder mounted in or on a customer's vehicle to deduct toll fares from a pre-paid account as the vehicle passes through the toll barrier. This reduces manpower at toll booths and increases traffic flow and fuel efficiency by reducing the need for complete stops to pay tolls at these locations.

E-ZPass lanes at a New Jersey Turnpike (I-95) Toll Gate for Exit 8A in Monroe Township, New Jersey, United States

By designing a tollgate specifically for electronic collection, it is possible to carry out open-road tolling, where the customer does not need to slow at all when passing through the tollgate. The U.S. state of Texas is testing a system on a stretch of Texas 121 that has no toll booths. Drivers without a TollTag have their license plate photographed automatically and the registered owner will receive a monthly bill, at a higher rate than those vehicles with TollTags.[14]

The first all-electric toll road in the eastern United States, the InterCounty Connector (Maryland Route 200) was partially opened to traffic in February 2011,[15] and the final segment was completed in November 2014.[16] The first section of another all-electronic toll road, the Triangle Expressway, opened at the beginning of 2012 in North Carolina.[17]

Some toll roads are managed under such systems as the Build-Operate-Transfer (BOT) system. Private companies build the roads and are given a limited franchise. Ownership is transferred to the government when the franchise expires. This type of arrangement is prevalent in Australia, Canada, Hong Kong, India, South Korea, Japan and the Philippines. The BOT system is a fairly new concept that is gaining ground in the United States, with California, Delaware, Florida, Illinois, Indiana, Mississippi,[18] Texas, and Virginia already building and operating toll roads under this scheme. Pennsylvania, Massachusetts, New Jersey, and Tennessee are also considering the BOT methodology for future highway projects.

The more traditional means of managing toll roads in the United States is through semi-autonomous public authorities. Kansas, Maryland, Massachusetts, New Hampshire, New Jersey, New York, North Carolina, Ohio, Oklahoma, Pennsylvania, and West Virginia manage their toll roads in this manner. While most of the toll roads in California, Delaware, Florida, Texas, and Virginia are operating under the BOT arrangement, a few of the older toll roads in these states are still operated by public authorities.

In France, all toll roads are operated by private companies, and the government takes a part of their profit.[citation needed]

Toll roads have been criticized as being inefficient in various ways:[19]

  1. They require vehicles to stop or slow down (except open road tolling); manual toll collection wastes time and raises vehicle operating costs.
  2. Collection costs can absorb up to one-third of revenues, and revenue theft is considered to be comparatively easy.
  3. Where the tolled roads are less congested than the parallel "free" roads, the traffic diversion resulting from the tolls increases congestion on the road system and reduces its usefulness.
  4. By tracking the vehicle locations, their drivers are subject to an effectual restriction of their freedom of movement and freedom from excessive surveillance.

A number of additional criticisms are also directed at toll roads in general:

  1. Toll roads are a form of regressive taxation; that is, compared to conventional taxes for funding roads, they benefit wealthier citizens more than poor citizens.[20][21]
  2. If toll roads are owned or managed by private entities, the citizens may lose money overall compared to conventional public funding because the private owners/operators of the toll system will naturally seek to profit from the roads.[22]
  3. The managing entities, whether public or private, may not correctly account for the overall social costs, particularly to the poor, when setting pricing and thus may hurt the neediest segments of society.[23]

Diverging diamond interchange

Residential Paving Cost Estimate Sealcoating a road on the University of California, Davis campus in 2013.

Sealcoating, or pavement sealing, is the process of applying a protective coating to asphalt-based pavements to provide a layer of protection from the elements: water, oils, and U.V. damage.

Sealcoat or pavement sealer is a coating for asphalt-based pavements. Sealcoating is marketed as a protective coating that extends the life of asphalt pavements. There is not any independent research that proves these claims.

Sealcoating may also reduce the friction or anti-skid properties associated with the exposed aggregates in asphalt.

Not all pavement sealcoat are created equal. For example, refined tar-based sealer offers the best protecting against water penetration and chemical resistance. Asphalt-based sealer typically offers poor protection against environmental chemical and harsher climates (salt water). Petroleum-based sealer offer protection against water and chemicals somewhere between the other two sealers. Another difference between coatings is in terms of wear. Again, refined tar-based sealer offers the best wear characteristics (typically 3–5 years) while asphalt-based sealer may last 1–3 years. Petroleum-based sealer falls between refined tar and asphalt.

There are concerns about pavement sealer polluting the environment after it is abraded from the surface of the pavement. Some states in North America have banned the use of coal tar–based sealants primarily based on United States Geological Survey studies.[1] The industry group that represents sealcoat manufacturers has performed numerous research and reviews of the USGS and have found it to be erroneous, biased (citation and white hat, to name a few) and too generalized in order to draw the conclusions that the United States Geological Survey claims.

There are primarily three types of pavement sealers. They are commonly known as refined tar-based (coal tar based), asphalt-based, and petroleum-based. All three have their advantages but are typically chosen by the contractors’ preference unless otherwise specified.

Prior to application the surface must be completely clean and dry using sweeping methods and/or blowers. If the surface is not clean and dry, then poor adhesion will result. Pavement sealers are applied with either pressurized spray equipment, or self-propelled squeegee machines or by hand with a squeegee. Equipment must have continuous agitation to maintain consistency of the sealcoat mix. The process is typically a two-coat application which requires 24 to 48 hours of curing before vehicles can be allowed back on the surface. Once the surface is properly prepared, then properly mixed sealer will be applied at about 60 square feet per gallon per coat.

The Sealcoating Process

Some studies that suggest that refined tar sealants are a significant contributor to polycyclic aromatic hydrocarbon levels in streams and creek beds and that the continual application of sealcoats may be a significant factor. As a result, a few municipalities in the United States have banned this material.[2] The same studies also suggest that it can be harmful if ingested before curing and ingesting soil or dust contaminated by eroded coal tar sealant.[3] It is also known to have effects on fish and other animals that live in water.

Pave My Driveway Quotes

https://www.helpwikileaks.co.za/johannesburg-2/

Help Wiki Leaks Have Paving Companies Near Me List