Asphalt Construction Company Pretoria

For other uses, see Asphalt (disambiguation). Note: The terms bitumen and asphalt are mostly interchangeable, Asphalt Construction Company in Pretoria except where asphalt is used as a shorthand for asphalt concrete. Natural bitumen from the Dead Sea Refined asphalt The University of Queensland pitch drop experiment, demonstrating the viscosity of asphalt

Asphalt Installation Price

Asphalt (/ˈæsˌfɔːlt, -ˌfɑːlt/), also known as bitumen (UK English: /ˈbɪtʃəmən, ˈbɪtjʊmən/,[1] US English: /bɪˈt(j)uːmən, baɪˈt(j)uːmən/)[2] is a sticky, black, and highly viscous liquid or semi-solid form of petroleum. It may be found in natural deposits or may be a refined product, and is classed as a pitch. Before the 20th century, the term asphaltum was also used.

Commercial Paving Price

The primary use (70%) of asphalt Driveway Pavers Companies is in road construction, where it is used as the glue or binder mixed with aggregate particles to create asphalt concrete. Its other main uses are for bituminous waterproofing products, including production of roofing felt and for sealing flat roofs.

The terms “asphalt” and “bitumen” are often used interchangeably to mean both natural and manufactured forms of the substance. In American English, “asphalt” (or “asphalt cement”) is commonly used for a refined residue from the distillation process of selected crude oils. Outside the United States, the product is often called “bitumen”, and geologists worldwide often prefer the term for the naturally occurring variety. Common colloquial usage often refers to various forms of asphalt as “tar”, as in the name of the La Brea Tar Pits.

Macadam

Residential Paving Cost Estimate

Naturally occurring asphalt is sometimes specified by the term “crude bitumen”. Asphalt Construction Company Its viscosity is similar to that of cold molasses[6][7] while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as “refined bitumen”. The Canadian province of Alberta has most of the world’s reserves of natural asphalt in the Athabasca oil sands, which cover 142,000 square kilometres (55,000 sq mi), an area larger than England.

Asphalt Surfacing Company Price

The word “asphalt” is derived from the late Middle English, in turn from French asphalte, based on Late Latin asphalton, asphaltum, which is the latinisation of the Greek ἄσφαλτος (ásphaltos, ásphalton), a word meaning “asphalt/bitumen/pitch” which perhaps derives from ἀ-, “without” and σφάλλω (sfallō), “make fall”.  Best Driveway Pavers the first use of asphalt by the ancients was in the nature of a cement for securing or joining together various objects, and it thus seems likely that the name itself was expressive of this application. Specifically, Herodotus mentioned that bitumen was brought to Babylon to build its gigantic fortification wall.[11] From the Greek, the word passed into late Latin, and thence into French (asphalte) and English (“asphaltum” and “asphalt”). In French, the term asphalte is used for naturally occurring asphalt-soaked limestone deposits, and for specialised manufactured products with fewer voids or greater bitumen content than the “asphaltic concrete” used to pave roads.

Driveway Paving Quotes

The expression “bitumen” originated in the Sanskrit words jatu, meaning “pitch”, and jatu-krit, meaning “pitch creating” or “pitch producing” (referring to coniferous or resinous trees). The Latin equivalent is claimed by some to be originally gwitu-men (pertaining to pitch), and by others, pixtumens (exuding or bubbling pitch), which was subsequently shortened to bitumen, thence passing via French into English. From the same root is derived the Anglo-Saxon word cwidu (mastix), the German word Kitt (cement or mastic) and the old Norse word kvada.

In British English, “bitumen” is used instead of “asphalt”. The word “asphalt” is instead used to refer to asphalt concrete, a mixture of construction aggregate and asphalt itself (also called “tarmac” in common parlance). Bitumen mixed with clay was usually called “asphaltum”,[13] but the term is less commonly used today.[citation needed]

Bleeding (roads)

Asphalt Driveway Price

In Australian English, “bitumen” is often used as the generic term for road surfaces.

In American English, “asphalt” is equivalent to the British “bitumen”. However, “asphalt” is also commonly used as a shortened form of “asphalt concrete” (therefore equivalent to the British “asphalt” or “tarmac”).

Asphalt Contractors Price

In Canadian English, the word “bitumen” is used to refer to the vast Canadian deposits of extremely heavy crude oil,[14] while “asphalt” is used for the oil refinery product. Diluted bitumen (diluted with naphtha to make it flow in pipelines) is known as “dilbit” in the Canadian petroleum industry, while bitumen “upgraded” to synthetic crude oil is known as “syncrude”, and syncrude blended with bitumen is called “synbit”.[15]

“Bitumen” is still the preferred geological term for naturally occurring deposits of the solid or semi-solid form of petroleum. “Bituminous rock” is a form of sandstone impregnated with bitumen. The tar sands of Alberta, Canada are a similar material.

Driveway Paving Quotes

Neither of the terms “asphalt” or “bitumen” should be confused with tar or coal tars.[further explanation needed]

See also: Asphaltene

The components of asphalt include four main classes of compounds:

The naphthene aromatics and polar aromatics are typically the majority components. Most natural bitumens also contain organosulfur compounds, resulting in an overall sulfur content of up to 4%. Nickel and vanadium are found at <10 parts per million, as is typical of some petroleum.

Asphalt Paving Price

The substance is soluble in carbon disulfide. It is commonly modelled as a colloid, with asphaltenes as the dispersed phase and maltenes as the continuous phase.[16] “It is almost impossible to separate and identify all the different molecules of asphalt, because the number of molecules with different chemical structure is extremely large”.

Asphalt may be confused with coal tar, which is a visually similar black, thermoplastic material produced by the destructive distillation of coal. During the early and mid-20th century, when town gas was produced, coal tar was a readily available byproduct and extensively used as the binder for road aggregates. The addition of coal tar to macadam roads led to the word “tarmac”, which is now used in common parlance to refer to road-making materials. However, since the 1970s, when natural gas succeeded town gas, asphalt has completely overtaken the use of coal tar in these applications. Other examples of this confusion include the La Brea Tar Pits and the Canadian oil sands, both of which actually contain natural bitumen rather than tar. “Pitch” is another term sometimes informally used at times to refer to asphalt, as in Pitch Lake.

Asphalt Construction Quotes

Bituminous outcrop of the Puy de la Poix, Clermont-Ferrand, France

The majority of asphalt used commercially is obtained from petroleum.[18] Nonetheless, large amounts of asphalt occur in concentrated form in nature. Naturally occurring deposits of bitumen are formed from the remains of ancient, microscopic algae (diatoms) and other once-living things. These remains were deposited in the mud on the bottom of the ocean or lake where the organisms lived. Under the heat (above 50 °C) and pressure of burial deep in the earth, the remains were transformed into materials such as bitumen, kerogen, or petroleum.

Natural deposits of bitumen include lakes such as the Pitch Lake in Trinidad and Tobago and Lake Bermudez in Venezuela. Natural seeps occur in the La Brea Tar Pits and in the Dead Sea.

Commercial Paving Quotes

Bitumen also occurs in unconsolidated sandstones known as “oil sands” in Alberta, Canada, and the similar “tar sands” in Utah, US. The Canadian province of Alberta has most of the world’s reserves, in three huge deposits covering 142,000 square kilometres (55,000 sq mi), an area larger than England or New York state. These bituminous sands contain 166 billion barrels (26.4×10^9 m3) of commercially established oil reserves, giving Canada the third largest oil reserves in the world. Although historically it was used without refining to pave roads, nearly all of the output is now used as raw material for oil refineries in Canada and the United States.

Sealcoat

Asphalt Repair Cost Estimate

The world’s largest deposit of natural bitumen, known as the Athabasca oil sands, is located in the McMurray Formation of Northern Alberta. This formation is from the early Cretaceous, and is composed of numerous lenses of oil-bearing sand with up to 20% oil.[19] Isotopic studies show the oil deposits to be about 110 million years old.[20] Two smaller but still very large formations occur in the Peace River oil sands and the Cold Lake oil sands, to the west and southeast of the Athabasca oil sands, respectively. Of the Alberta deposits, only parts of the Athabasca oil sands are shallow enough to be suitable for surface mining. The other 80% has to be produced by oil wells using enhanced oil recovery techniques like steam-assisted gravity drainage.

Asphalt Driveway Costs

Much smaller heavy oil or bitumen deposits also occur in the Uinta Basin in Utah, US. The Tar Sand Triangle deposit, for example, is roughly 6% bitumen.

Bitumen may occur in hydrothermal veins. An example of this is within the Uinta Basin of Utah, in the US, where there is a swarm of laterally and vertically extensive veins composed of a solid hydrocarbon termed Gilsonite. These veins formed by the polymerization and solidification of hydrocarbons that were mobilized from the deeper oil shales of the Green River Formation during burial and diagenesis.

Asphalt Road Price

Bitumen is similar to the organic matter in carbonaceous meteorites.[23] However, detailed studies have shown these materials to be distinct.[24] The vast Alberta bitumen resources are considered to have started out as living material from marine plants and animals, mainly algae, that died millions of years ago when an ancient ocean covered Alberta. They were covered by mud, buried deeply over time, and gently cooked into oil by geothermal heat at a temperature of 50 to 150 °C (120 to 300 °F). Due to pressure from the rising of the Rocky Mountains in southwestern Alberta, 80 to 55 million years ago, the oil was driven northeast hundreds of kilometres and trapped into underground sand deposits left behind by ancient river beds and ocean beaches, thus forming the oil sands.

Paving Companies Quotes

The use of natural bitumen for waterproofing, and as an adhesive dates at least to the fifth millennium BC, with a crop storage basket discovered in Mehrgarh, of the Indus Valley Civilization, lined with it.[25] By the 3rd millennia BC refined rock asphalt was in use, in the region, and was used to waterproof the Great Bath, Mohenjo-daro.

In the ancient Middle East, the Sumerians used natural bitumen deposits for mortar between bricks and stones, to cement parts of carvings, such as eyes, into place, for ship caulking, and for waterproofing.[3] The Greek historian Herodotus said hot bitumen was used as mortar in the walls of Babylon.

Asphalt Paving Price

The 1 kilometre (0.62 mi) long Euphrates Tunnel beneath the river Euphrates at Babylon in the time of Queen Semiramis (ca. 800 BC) was reportedly constructed of burnt bricks covered with bitumen as a waterproofing agent.

Bitumen was used by ancient Egyptians to embalm mummies.[3][28] The Persian word for asphalt is moom, which is related to the English word mummy. The Egyptians’ primary source of bitumen was the Dead Sea, which the Romans knew as Palus Asphaltites (Asphalt Lake).

Asphalt Driveway Repair Quotes

Approximately 40 AD, Dioscorides described the Dead Sea material as Judaicum bitumen, and noted other places in the region where it could be found.[29] The Sidon bitumen is thought to refer to material found at Hasbeya.[30] Pliny refers also to bitumen being found in Epirus. It was a valuable strategic resource, the object of the first known battle for a hydrocarbon deposit—between the Seleucids and the Nabateans in 312 BC.

Asphalt Surfacing Contractors Price

In the ancient Far East, natural bitumen was slowly boiled to get rid of the higher fractions, leaving a thermoplastic material of higher molecular weight that when layered on objects became quite hard upon cooling. This was used to cover objects that needed waterproofing,[3] such as scabbards and other items. Statuettes of household deities were also cast with this type of material in Japan, and probably also in China.

In North America, archaeological recovery has indicated bitumen was sometimes used to adhere stone projectile points to wooden shafts.[32] In Canada, aboriginal people used bitumen seeping out of the banks of the Athabasca and other rivers to waterproof birch bark canoes, and also heated it in smudge pots to ward off mosquitoes in the summer.

Paving Companies Quotes

In 1553, Pierre Belon described in his work Observations that pissasphalto, a mixture of pitch and bitumen, was used in the Republic of Ragusa (now Dubrovnik, Croatia) for tarring of ships.

Macadam

Asphalt Surfacing Company Cost Estimate

An 1838 edition of Mechanics Magazine cites an early use of asphalt in France. A pamphlet dated 1621, by “a certain Monsieur d’Eyrinys, states that he had discovered the existence (of asphaltum) in large quantities in the vicinity of Neufchatel”, and that he proposed to use it in a variety of ways – “principally in the construction of air-proof granaries, and in protecting, by means of the arches, the water-courses in the city of Paris from the intrusion of dirt and filth”, which at that time made the water unusable. “He expatiates also on the excellence of this material for forming level and durable terraces” in palaces, “the notion of forming such terraces in the streets not one likely to cross the brain of a Parisian of that generation”.

Paving Companies Quotes

But the substance was generally neglected in France until the revolution of 1830. In the 1830s there was a surge of interest, and asphalt became widely used “for pavements, flat roofs, and the lining of cisterns, and in England, some use of it had been made of it for similar purposes”. Its rise in Europe was “a sudden phenomenon”, after natural deposits were found “in France at Osbann (Bas-Rhin), the Parc (Ain) and the Puy-de-la-Poix (Puy-de-Dôme)”, although it could also be made artificially.[35] One of the earliest uses in France was the laying of about 24,000 square yards of Seyssel asphalt at the Place de la Concorde in 1835.

Among the earlier uses of bitumen in the United Kingdom was for etching. William Salmon’s Polygraphice (1673) provides a recipe for varnish used in etching, consisting of three ounces of virgin wax, two ounces of mastic, and one ounce of asphaltum.[37] By the fifth edition in 1685, he had included more asphaltum recipes from other sources.

Residential Paving Companies Quotes

The first British patent for the use of asphalt was “Cassell’s patent asphalte or bitumen” in 1834.[35] Then on 25 November 1837, Richard Tappin Claridge patented the use of Seyssel asphalt (patent #7849), for use in asphalte pavement,[39][40] having seen it employed in France and Belgium when visiting with Frederick Walter Simms, who worked with him on the introduction of asphalt to Britain.[41][42] Dr T. Lamb Phipson writes that his father, Samuel Ryland Phipson, a friend of Claridge, was also “instrumental in introducing the asphalte pavement (in 1836)”.[43] Indeed, mastic pavements had been previously employed at Vauxhall by a competitor of Claridge, but without success.

Permeable paving

Asphalt Driveway Paving Price

Claridge obtained a patent in Scotland on 27 March 1838, and obtained a patent in Ireland on 23 April 1838. In 1851, extensions for the 1837 patent and for both 1838 patents were sought by the trustees of a company previously formed by Claridge. Claridge’s Patent Asphalte Company—formed in 1838 for the purpose of introducing to Britain “Asphalte in its natural state from the mine at Pyrimont Seysell in France”,—”laid one of the first asphalt pavements in Whitehall”.  Trials were made of the pavement in 1838 on the footway in Whitehall, the stable at Knightsbridge Barracks,”and subsequently on the space at the bottom of the steps leading from Waterloo Place to St. James Park”. “The formation in 1838 of Claridge’s Patent Asphalte Company (with a distinguished list of aristocratic patrons, and Marc and Isambard Brunel as, respectively, a trustee and consulting engineer), gave an enormous impetus to the development of a British asphalt industry”.[45] “By the end of 1838, at least two other companies, Robinson’s and the Bastenne company, were in production”,[50] with asphalt being laid as paving at Brighton, Herne Bay, Canterbury, Kensington, the Strand, and a large floor area in Bunhill-row, while meantime Claridge’s Whitehall paving “continue(d) in good order”.

Asphalt Construction Company in Pretoria ?

Asphalt Installation Cost Estimate Boulevard Haussmann in Paris, France. The Straße des 17. Juni in Berlin, Germany.

A boulevard (French, from Dutch: Bolwerk – bulwark, meaning bastion), often abbreviated Blvd, is a type of large road, usually running through a city.

In modern American usage it often means a wide, multi-lane arterial thoroughfare, often divided with a median down the centre, and perhaps with roadways along each side designed as slow travel and parking lanes and for bicycle and pedestrian usage, often with an above-average quality of landscaping and scenery.

Phnom Penh has numerous boulevards scattered throughout the city. Norodom Boulevard, Sisowath Boulevard, Monivong Boulevard, and Sothearos Boulevard are the most famous.

Marine Drive, Mumbai View of Rajpath from Raisina Hill with India Gate at its terminal Keshavarz Boulevard of Tehran, Iran in mid 1970s

In Iran, "Boulevard" is generally defined as a wide road surrounded by trees in sides and divided by a green space line including grass, trees or buxuses in the middle. There are many boulevards in Iran. One of the most famous one is Keshavarz Boulevard in Tehran which is usually referred to as "The Boulevard". Isfahan has also a historical boulevard which is called Chaharbagh Boulevard.

Tel Aviv, was originally designed along the guidelines set out by architect Sir Patrick Geddes. Geddes designed a green or garden ring of boulevards surrounding the central city, which still exists today and continues to characterize Tel Aviv. One of the most famous and busy streets in the city is Rothschild Boulevard.

Roxas Boulevard in Manila, Philippines.

Roxas Boulevard is a major boulevard in Metro Manila, Philippines. The boulevard, which runs along the shores of Manila Bay, is popular for its view of Manila's famous sunsets and stretch of coconut trees. The boulevard is an eight-lane major arterial road designated as Radial Road 1 that connects the center of Manila with Pasay and Parañaque.

Other boulevards in Metro Manila include the Shaw Boulevard, España Boulevard, Pedro Tuazon Boulevard and Quezon Boulevard. Not all boulevards in the Philippines have ornamentation, or slow lanes, like the Aurora Boulevard and E. Rodriguez Sr. Boulevard, which have no ornamentation at all.

Osmeña Boulevard is a boulevard in Cebu City, the Philippines' second city. It is Cebu's most important street and is its primary ceremonial avenue,[1] the conventional route of the city's civic and cultural parades. Measuring six to ten lanes wide with 3-5 meter-wide sidewalks on both sides and a landscaped central median, the boulevard is lined with narra trees. Midway is the park and roundabout of Fuente Osmeña.

See also: Vienna Ring Road

The Ring Road (German: Ringstraße) is a circular ring road surrounding the Innere Stadt district of Vienna, Austria and is one of its main sights. Constructed in the mid-19th century after the dismantling of the city fortification walls, its architecture is typical of the eclectic, historicist style called Ringstraßenstil (Ring Road Style) of the 1860s to 1890s.

Known for its unique architectural beauty and history, it has also been called the "Lord of the ring roads", and is inscribed by UNESCO as part of Vienna's World Heritage Site.

The Ringstraße is 5.2 kilometers (3.2 miles) long and has several sections. It surrounds the central area of Vienna on all sides, except for the northeast, where its place is taken by the Franz-Josephs-Kai, the street going along the Donaukanal (a branch of the Danube). Starting from the Ringturm at the northern end of the Franz-Josephs-Kai, the sections are:

See also: Boulevards of Paris

Baron Haussmann made such roads well known in his re-shaping of Second Empire Paris between 1853 and 1870. The French word boulevard originally referred to the flat summit of a rampart (the etymology of the word distantly parallels that of bulwark which is a Dutch loanword [bolwerk]). Several Parisian boulevards replaced old city walls; more generally, boulevards encircle a city center, in contrast to avenues that radiate from the center.

Boulevard is sometimes used to describe an elegantly wide road, such as those in Paris, approaching the Champs-Élysées. Famous French boulevards: Avenue Montaigne, Montmartre, Invalides, Boulevard Haussmann. Frequenters of boulevards were sometimes called boulevardiers

Unter den Linden, Berlin, Germany.

The historically most famous boulevard in Berlin and arguably in all of Germany is Unter den Linden: location of the Berlin State Opera, Berlin Cathedral, the former royal palace, Humboldt University, the Neue Wache state memorial, the Germany Historical Museum housed in the old arsenal and Brandenburg Gate being the boulevard's focal point. Most famed for its classy shopping facilities is Berlin's Kurfürstendamm.

In the 1920s it was considered one of the most cosmopolitan places in Europe, being not only an elegant residential area but also a major centre of nightlife and leisure. Ku'damm retained this air throughout the Cold War becoming the hub of free West-Berlin. Still today it is the city's most frequented shopping district.

A notable boulevard in Berlin's East is Karl-Marx-Allee, which was built primarily in the 1950s in Stalinist Classicism architecture with decorative buildings. One section of the boulevard is more decorative while the other is more modern. In the center of the boulevard is the Strausberger Platz, which has buildings in wedding-cake style. The boulevard is divided into various blocks. Between 1949 and 1989, it was the main center of East Berlin. The Königsallee in Düsseldorf is known for its many famous fashion stores and showrooms.

Munich is well known for its four royal avenues constructed by the Bavarian monarchs of the 19th century, which can also be classified as boulevards: Brienner Straße, Leopoldstrasse, Maximilianstraße, and Prinzregentenstraße.

Combino Supra at the Grand Boulevard, Budapest, Hungary

The Hungarian capital Budapest is also known for its well planned street system with wide avenues and boulevards, running through the city. There are three main boulevards, named Little Boulevard, Grand Boulevard and Hungária Boulevard. Little Boulevard was built on the demolished medieval city walls of Pest in the late 19th century. Grand Boulevard, the most prominent, was built for the 1000th anniversary of the Hungarian conquest in 1896. It has a uniform facade, and the busiest tram line in Europe.[2]

Hungária Boulevard was built from 1980 to 2000 and it is the widest (70 meters, like Champs-Élysées) and longest (13 kilometers) boulevard in Budapest with six to ten traffic lanes and a rapid tram line. Although the construction of the boulevard was finished in 2000, the facade is still incomplete, as there are many empty parcels due to demolition of old apartments and factories.

As in the UK, Ireland also has a lack of boulevards, but O'Connell Street in Dublin is one of Europe's widest streets and is very like a Victorian boulevard. In recent housing developments in Dublin, the boulevard is becoming more and more common in addresses (e.g. Tyrellstown Blvd, Park Blvd, Bayside Blvd), and a boulevard was opened in Gorey, County Wexford in early 2015.

Boulevard in Florence, Italy

Florence's historic centre, for example, is surrounded by the Viali di Circonvallazione, a series of 6-lane wide streets; the boulevards follow the outline of the ancient walls of Florence, that were demolished since 1865 to make Florence, then the capital of Italy (for 5 years, 1865–1870), a modern and big city like the other European capitals. The Viali were inspired by the similar Parisian boulevards.

Oder in Szczecin

Boulevards are representative places in cities situated near big rivers and usually parts of their centres, for example in Cracow, Warsaw, Toruń, Bydgoszcz, Gdańsk, Gorzów Wielkopolski, Wrocław and Świnoujście.

One of the most famous boulevards in Poland is the street named Wały Chrobrego (former German name: Hakenterrasse) in Szczecin, where the final events of The Tall Ships' Races took place in 2007 and 2013. This is a street complex, about 100 years old, at the river bank of Oder with some connections to the harbour in Szczecin and the Baltic Sea. There are many tourist attractions e.g. National Museum in Szczecin, The Contemporary Theater (Teatr Współczesny), Statue of Hercules fighting the Centaur and the waterfront for ships, including harbour cruise ships and hydrofoil to Świnoujście. In the area there are more historic buildings situated, for instance The Ducal Castle.

Some tourist towns and villages are known among others for their boulevards and esplanades. There are many localities situated by the sea, for example Sopot, Gdynia, Kołobrzeg, Misdroy and Świnoujście, or other types of big water areas as Trzebież lying on the Szczecin Lagoon. Feliks Nowowiejski Seaside Boulevard in Gdynia was the first stage of the Tour de Pologne in 2003. Boulevards are also representative places in Gryfino (dictrict town in Poland) and German village Mescherin localized by both sides of the valley of Oder river protected with Lower Odra Valley Landscape Park.

There are also many boulevards by lakes and small rivers, mainly in harbours areas, as in Giżycko, and in urban parks, for example in Łobez, Piotrków Trybunalski, Poznań and the oldest Polish urban park in Kalisz founded in 1798. Boulevards and paths in Łazienki Park in Warsaw surround Palace on the Water. The medieval port crane, called Żuraw, over Motława river, the junction of two boulevards - Długie Pobrzeże and Rybackie Pobrzeże - is the symbol of the medieval harbour of Gdańsk. The Old Town Promenade (Promenada Staromiejska) in Wrocław was built on the former on the former defensive fortifications along the City Moat and a small section along the Oder river. The boulevard in Kasprowicz Park in Szczecin leads along Rusałka Lake from the City Hall area to The Summer Theater (Teatr Letni) and then to Różanka Rose Garden and the forest of Puszcza Wkrzańska. The scenic above ground promenade in Augustów enables the observation of the Augustów Canal and national roads 8 and 16.

Clean Ponds in the wide median green of Chistoprudny Boulevard, Moscow, Russia

The dictionary defines boulevard as a wide green strip in the middle of a city street or on the embankment.[3] Historical Boulevard Ring in Moscow emerged on the site of the former White City walls (demolished in the 1760s and 1770s) before the Fire of 1812, starting with Tverskoy Boulevard in 1796.[4] The whole ring was replanted and rebuilt after the fire, in the 1820s; together with the embankments of Moskva River the boulevards form the second centremost city ring.

Green boulevards of that period were terminated with corner hotel and shop buildings, most of them eventually demolished to make way for street traffic. Garden Ring, developed in the middle of the 19th century, had traditional median boulevards in its western part and side gardens in the east (streets with side strips of green, even those separating main traffic and frontage roads, are not usually considered boulevards).

Street names of Saint Petersburg evolved differently: median greens of major avenues were called boulevards, but the avenues themselves typically were and still are called prospekts (i.e. Bolshoy Prospekt of Vasilievsky Island).

Owing to city planning and physical geography, the UK has only a few boulevards. Glasgow's Mosspark Boulevard, a former segregated tram and car wide road along Bellahouston Park, and Great Western Road, colloqially known as 'The Boulevard' north of the River, is a good example, a mostly dual carriageway road running to the outer suburbs passing through the fashionable West End district, with many shops and bars dotted along the route.

After the Great Fire of London, London was supposed to be formed of straight boulevards, squares and plazas which are seen in mainland Europe, but due to land ownership issues these plans never came to fruition. Boulevards in London are rare but examples, such as Blackfriars Road, do exist. Milton Keynes, Buckinghamshire, is one of only a handful of examples where boulevards are a key feature. This is due to Milton Keynes being built as a modern new town in the 1960s.

Nottingham (and to a lesser extent, Leicester) also have extensive networks of boulevards, although some lower-capacity highways are named boulevards even when they are streets; for example Gilbert Boulevard, Arnold[5] (Asquith Way/Boulevard, West Knighton).

Furthermore, the north-west town of Warrington in Cheshire has a large number of boulevards, some more recent than others. Lining the Gemini Retail Park in Warrington is Europa Boulevard with the traditional tree lined pavements and two-lane traffic. Also, on the recent housing development, Chapelford - built on the old Burtonwood Airbase site, are a number of boulevards such as Boston and Santa Rosa Boulevard, built in reference to the American history associated from World War II on the site.

Barbaros Boulevard in Istanbul, Turkey

Barbaros Boulevard is opened in 1958 due to new city planning in Istanbul. Ankara also has a lot of boulevards.

View of Mexico City's Paseo de la Reforma from Castillo de Chapultepec.

In the Dominican Republic, more specifically in Greater Santo Domingo there is the Winston Churchill and 27 de Febrero Boulevard in Downtown Santo Domingo and Las Americas Boulevard in Santo Domingo Este. These boulevards are known for their wide median with plazas and trees on it.

Paseo de la Reforma (English: "Reform Promenade") is a 12 kilometer long boulevard in Mexico City, Mexico that runs in a straight line, cutting diagonally across the city. It runs from Chapultepec Park, then passes alongside the Torre Mayor (currently Latin America's tallest building), continues through the fashionable Zona Rosa and then to the Zócalo by Juárez Avenue and Francisco I. Madero Street. One of the most famous monuments of the Paseo is El Ángel de la Independencia – a tall column with a gilded statue of a Winged Victory on its top and marble statues at its base depicting the heroes of the Mexican War of Independence.

The Paseo de la Reforma was designed in the 1860s during the Second Mexican Empire by the Austrian military officer and engineer Ferdinand von Rosenzweig on the orders of Maximilian I of Mexico. He wanted to connect his imperial residence, Chapultepec Castle, to the Palacio Nacional in the city's center. When it was inaugurated, it was named the Paseo de la Emperatriz (The Empress's Promenade), after his consort, Empress Carlota of Mexico. The name now commemorates the liberal reforms of 19th-century president Benito Juárez.

Queens Boulevard in New York City Road verge (or Boulevard) in Oak Park, Illinois Roosevelt Boulevard in Philadelphia, Pennsylvania

In many places in the United States of America and Canada, municipalities and developers have adapted the term to refer to arterial roads, not necessarily boulevards in the traditional sense. In California, many so-called "boulevards" extend into the mountains as narrow, winding road segments only two lanes in width. However, boulevards can be any divided highway with at-grade intersections to local streets. They are commonly abbreviated Blvd. Some celebrated examples in California include:

In Chicago, the boulevard system is a network of wide, planted-median boulevards that winds through the south, west, and north sides of the city and includes a ring of parks. Most of the boulevards and parks are 3–6 miles from The Loop. Trucks are not allowed on boulevards in Chicago. Seattle also features a network of boulevards that connect most of the city's public parks to each other, a design recommended by the Olmsted Brothers.[6]

In Philadelphia, the boulevard system includes the length of the Benjamin Franklin Parkway known as the Museum District. It also includes the arterial roadway of the Roosevelt Boulevard and the Southern Boulevard Parkway built as a connecting median of two urban parks, but now also serves as the west roadway entrance of the world class centralized Philadelphia Sports Complex and gatehouse entrance of the Philadelphia Navy Yard in South Philadelphia.

Sometimes, the word "boulevard" is used as a standalone name, as is the case in Atlanta, and Roosevelt Boulevard in the Northeast section of Philadelphia is sometimes referred to, chiefly by locals, simply as "The Boulevard." In Pittsburgh, "The Boulevard of the Allies" runs through and connects major areas of the city.

Kansas City, Missouri and St. Louis, Missouri are famous for having more boulevards and avenues in the world than any city (if the term is used lightly). In Charlotte, North Carolina, Independence Boulevard connects Uptown to the southeastern section of the city, although the westernmost segment is actually a freeway.

New York City has a lot of boulevards, many of which are not designated as such (like Ocean Parkway or Broadway). In the borough of Queens, many important thoroughfares are designated as Boulevards.

Nineteenth century parkways, such as Brooklyn's Ocean Parkway, were often built in the form of boulevards and are informally referred to as such. In some cities, however, the term "boulevard" does not specify a larger, wider, or more important road. "Boulevard" may simply be used as one of many words describing roads in communities containing multiple iterations of the same street name (such as in the Ranchlands district of Calgary, where Ranchlands Boulevard exists side-by-side with Ranchlands Road, Ranchlands Court, Ranchlands Mews, etc.) Nowadays boulevards can be found most anywhere and their original structured meaning has lost almost all meaning.

Lake Shore Boulevard, a six-lane thoroughfare runs along the lakefront in Toronto from Woodbine Avenue in the east to the city limits in the west. The section between Jameson Avenue and the Humber River (the original section), as an example of urban planning, was laid out to provide a pleasant drive with a view of Humber Bay on Lake Ontario and easy access to the park lands by automobile. It was later expanded for commuting.

A famous American example is Las Vegas Boulevard in Las Vegas, Nevada.

Norodom Boulevard

Melbourne has at least four roads named "the Boulevard." These are, generally, long roads with many curves which wind alongside the Yarra River. In addition, the spelling of boulevard with an extra 'e' is common, for example the Southlands Boulevarde shopping centre in southern Perth. Australia post officially abbreviates boulevard as "BVD".[7]

Several Melbourne thoroughfares not named as a boulevard do in fact follow the boulevard configuration of multiple lanes and landscaping. These include St Kilda Road, Royal Parade, Victoria Parade, Flemington Road, and the outer section of Mount Alexander Road.

Boulevards in Sydney include:

Additionally, single-suburb boulevards are situated in Brighton-le-Sands, Cammeray, Cheltenham, Epping, Lidcombe, Lilyfield, Malabar, Newport, Sans Souci, Strathfield and Yagoona.

Construction began on the Orewa Boulevard in March 2009, the works are expected to be complete by February 2010. This boulevard will be approximately 400 m long with Pohutukawa and palm lined footpaths, a wide cycleway will be constructed on the beach side of the road and carparks on the business side. The Orewa Boulevard is a project commissioned by the Rodney District Council with the vision of connecting the CBD to Orewa Beach.

Central Christchurch is surrounded and connected by a series of large boulevards (usually called "avenues" in New Zealand). These include four which surround the central city, Bealey Avenue, Fitzgerald Avenue, Deans Avenue, and Moorhouse Avenue, and also Riccarton Avenue, which traverses the large central city park, Hagley Park. The centre of the city is often described locally as being "within the Four Avenues".[8]

Avenida 9 de Julio in the heart of Buenos Aires, which is the capital city of Argentina, is as wide as 7 lanes in each direction, with 4 further lanes flanking the main boulevard in parallel roads on either side.

View of Bogota’s La Soledad Park Way Boulevard

In Bogotá, ‘’’La Soledad Park Way Boulevard’’’ is an 1 kilometer important boulevard, in the Locality of Teusaquillo located in Bogotá’s City Center and it crosses from the street 35 to street 45.

In the boulevard you can see several monuments and restaurants including Crepes & Waffles, Kokoriko, Subway, The Cheesecake Factory, and the historical hotel ‘’Hotel Park Way Boulevard’’

In Montevideo, Artigas Boulevard is an important avenue (40 metres (130 ft) wide) that encloses the central area.

Diverging diamond interchange

Paver Repair Quotes Permeable paving demonstration Stone paving in Santarém, Portugal

Permeable paving is a method of paving vehicle and pedestrian pathways that allows for infiltration of fluids. In pavement design the base is the top portion of the roadway that pedestrians or vehicles come into contact with. The media used for the base of permeable paving may be porous to allow for fluids to flow through it or nonporous media that are spaced so that fluid may flow in between the crack may be used. In addition to reducing surface runoff, permeable paving can trap suspended solids therefore filtering pollutants from stormwater.[1] Examples include roads, paths, and parking lots that are subject to light vehicular traffic, such as cycle-paths, service or emergency access lanes, road and airport shoulders, and residential sidewalks and driveways.

Although some porous paving materials appear nearly indistinguishable from nonporous materials, their environmental effects are qualitatively different. Whether it is pervious concrete, porous asphalt, paving stones or concrete or plastic-based pavers, all these pervious materials allow stormwater to percolate and infiltrate the surface areas, traditionally impervious to the soil below. The goal is to control stormwater at the source, reduce runoff and improve water quality by filtering pollutants in the substrata layers.

Permeable solutions can be based on: porous asphalt and concrete surfaces, concrete pavers (permeable interlocking concrete paving systems – PICP), or polymer-based grass pavers, grids and geocells. Porous pavements and concrete pavers (actually the voids in-between them) enable stormwater to drain through a stone base layer for on-site infiltration and filtering. Polymer based grass grid or cellular paver systems provide load bearing reinforcement for unpaved surfaces of gravel or turf.

Grass pavers, plastic turf reinforcing grids (PTRG), and geocells (cellular confinement systems) are honeycombed 3D grid-cellular systems, made of thin-walled HDPE plastic or other polymer alloys. These provide grass reinforcement, ground stabilization and gravel retention. The 3D structure reinforces infill and transfers vertical loads from the surface, distributing them over a wider area. Selection of the type of cellular grid depends to an extent on the surface material, traffic and loads. The cellular grids are installed on a prepared base layer of open-graded stone (higher void spacing) or engineered stone (stronger). The surface layer may be compacted gravel or topsoil seeded with grass and fertilizer. In addition to load support, the cellular grid reduces compaction of the soil to maintain permeability, while the roots improve permeability due to their root channels.[2]

In new suburban growth, porous pavements protect watersheds. In existing built-up areas and towns, redevelopment and reconstruction are opportunities to implement stormwater water management practices. Permeable paving is an important component in Low Impact Development (LID), a process for land development in the United States that attempts to minimize impacts on water quality and the similar concept of sustainable drainage systems (SuDS) in the United Kingdom.

The infiltration capacity of the native soil is a key design consideration for determining the depth of base rock for stormwater storage or for whether an underdrain system is needed.

Permeable paving surfaces have been demonstrated as effective in managing runoff from paved surfaces.[3][4] Large volumes of urban runoff causes serious erosion and siltation in surface water bodies. Permeable pavers provide a solid ground surface, strong enough to take heavy loads, like large vehicles, while at the same time they allow water to filter through the surface and reach the underlying soils, mimicking natural ground absorption.[5] They can reduce downstream flooding and stream bank erosion, and maintain base flows in rivers to keep ecosystems self-sustaining. Permeable pavers also combat erosion that occurs when grass is dry or dead, by replacing grassed areas in suburban and residential environments.[6]

Permeable paving surfaces keep the pollutants in place in the soil or other material underlying the roadway, and allow water seepage to groundwater recharge while preventing the stream erosion problems. They capture the heavy metals that fall on them, preventing them from washing downstream and accumulating inadvertently in the environment. In the void spaces, naturally occurring micro-organisms digest car oils, leaving little but carbon dioxide and water. Rainwater infiltration is usually less than that of an impervious pavement with a separate stormwater management facility somewhere downstream.[citation needed].in areas where infiltration is not possible due to unsuitable soil conditions permeable pavements are used in the attenuation mode where water is retained in the pavement and slowly released to surface water systems between storm events.

Permeable pavements may give urban trees the rooting space they need to grow to full size. A "structural-soil" pavement base combines structural aggregate with soil; a porous surface admits vital air and water to the rooting zone. This integrates healthy ecology and thriving cities, with the living tree canopy above, the city's traffic on the ground, and living tree roots below. The benefits of permeables on urban tree growth have not been conclusively demonstrated and many researchers have observed tree growth is not increased if construction practices compact materials before permeable pavements are installed.[7][8]

Permeable pavements are designed to replace Effective Impervious Areas (EIAs), not to manage stormwater from other impervious surfaces on site. Use of this technique must be part of an overall on site management system for stormwater, and is not a replacement for other techniques.

Also, in a large storm event, the water table below the porous pavement can rise to a higher level preventing the precipitation from being absorbed into the ground. The additional water is stored in the open graded crushed drain rock base and remains until the subgrade can absorb the water. For clay-based soils, or other low to 'non'-draining soils, it is important to increase the depth of the crushed drain rock base to allow additional capacity for the water as it waits to be infiltrated.

The best way to prevent this problem is to understand the soil infiltration rate, and design the pavement and base depths to meet the volume of water. Or, allow for adequate rain water run off at the pavement design stage.

Highly contaminated runoff can be generated by some land uses where pollutant concentrations exceed those typically found in stormwater. These "hot spots" include commercial plant nurseries, recycling facilities, fueling stations, industrial storage, marinas, some outdoor loading facilities, public works yards, hazardous materials generators (if containers are exposed to rainfall), vehicle service and maintenance areas, and vehicle and equipment washing and steam cleaning facilities. Since porous pavement is an infiltration practice, it should not be applied at stormwater hot spots due to the potential for groundwater contamination. All contaminated runoff should be prevented from entering municipal storm drain systems by using best management practices (BMPs) for the specific industry or activity.[9]

Reference sources differ on whether low or medium traffic volumes and weights are appropriate for porous pavements. For example, around truck loading docks and areas of high commercial traffic, porous pavement is sometimes cited as being inappropriate. However, given the variability of products available, the growing number of existing installations in North America and targeted research by both manufacturers and user agencies, the range of accepted applications seems to be expanding. Some concrete paver companies have developed products specifically for industrial applications. Working examples exist at fire halls, busy retail complex parking lots, and on public and private roads, including intersections in parts of North America with quite severe winter conditions.

Permeable pavements may not be appropriate when land surrounding or draining into the pavement exceeds a 20 percent slope, where pavement is down slope from buildings or where foundations have piped drainage at their footers. The key is to ensure that drainage from other parts of a site is intercepted and dealt with separately rather than being directed onto permeable surfaces.

Cold climates may present special challenges. Road salt contains chlorides that could migrate through the porous pavement into groundwater. Snow plow blades could catch block edges and damage surfaces. Sand cannot be used for snow and ice control on perveous asphalt or concrete because it will plug the pores and reduce permeability. Infiltrating runoff may freeze below the pavement, causing frost heave, though design modifications can reduce this risk. These potential problems do not mean that porous pavement cannot be used in cold climates. Porous pavement designed to reduce frost heave has been used successfully in Norway. Furthermore, experience suggests that rapid drainage below porous surfaces increases the rate of snow melt above.

Some estimates put the cost of permeable paving at two to three times that of conventional asphalt paving. Using permeable paving, however, can reduce the cost of providing larger or more stormwater BMPs on site, and these savings should be factored into any cost analysis. In addition, the off-site environmental impact costs of not reducing on-site stormwater volumes and pollution have historically been ignored or assigned to other groups (local government parks, public works and environmental restoration budgets, fisheries losses, etc.) The City of Olympia, Washington is studying the use of pervious concrete quite closely and finding that new stormwater regulations are making it a viable alternative to storm water.

Some permeable pavements require frequent maintenance because grit or gravel can block the open pores. This is commonly done by industrial vacuums that suck up all the sediment. If maintenance is not carried out on a regular basis, the porous pavements can begin to function more like impervious surfaces. With more advanced paving systems the levels of maintenance needed can be greatly decreased, elastomerically bound glass pavements requires less maintenance than regular concrete paving as the glass bound pavement has 50% more void space.

Plastic grid systems, if selected and installed correctly, are becoming more and more popular with local government maintenance personnel owing to the reduction in maintenance efforts: reduced gravel migration and weed suppression in public park settings.

Some permeable paving products are prone to damage from misuse, such as drivers who tear up patches of plastic & gravel grid systems by "joy riding" on remote parking lots at night. The damage is not difficult to repair but can look unsightly in the meantime. Grass pavers require supplemental watering in the first year to establish the vegetation, otherwise they may need to be re-seeded. Regional climate also means that most grass applications will go dormant during the dry season. While brown vegetation is only a matter of aesthetics, it can influence public support for this type of permeable paving.

Traditional permeable concrete paving bricks tend to lose their color in relatively short time which can be costly to replace or clean and is mainly due to the problem of efflorescence.

Efflorescence is a hardened crystalline deposit of salts, which migrate from the center of concrete or masonry pavers to the surface to form insoluble calcium carbonates that harden on the surface. Given time, these deposits form much like how a stalactite takes shape in a cave, except in this case on a flat surface. Efflorescence usually appears white, gray or black depending on the region.

Over time efflorescence begins to negatively affect the overall appearance of masonry/concrete and may cause the surfaces to become slippery when exposed to moisture. If left unchecked, this efflorescence will harden whereby the calcium/lime deposits begin to affect the integrity of the cementatious surface by slowly eroding away the cement paste and aggregate. In some cases it will also discolor stained or coated surfaces.

Efflorescence forms more quickly in areas that are exposed to excessive amounts of moisture such as near pool decks, spas, and fountains or where irrigation runoff is present. As a result, these affected regions become very slick when wet thereby causing a significant loss of "friction coefficient". This can be of serious concern especially as a public safety issue to individuals, principals and property owners by exposing them to possible injury and increased general liability claims.

Efflorescence remover chemicals can be used to remove calcium/lime build-up without damaging the integrity of the paving surface.

Installation of porous pavements is no more difficult than that of dense pavements, but has different specifications and procedures which must be strictly adhered to. Nine different families of porous paving materials present distinctive advantages and disadvantages for specific applications. Here are examples:

Main article: Pervious concrete

Pervious concrete is widely available, can bear frequent traffic, and is universally accessible. Pervious concrete quality depends on the installer's knowledge and experience.[10]

Plastic grids allow for a 100% porous system using structural grid systems for containing and stabilizing either gravel or turf. These grids come in a variety of shapes and sizes depending on use; from pathways to commercial parking lots. These systems have been used readily in Europe for over a decade, but are gaining popularity in North America due to requirements by government for many projects to meet LEED environmental building standards. Plastic grid system are also popular with homeowners due to their lower cost to install, ease of installation, and versatility. The ideal design for this type of grid system is a closed cell system, which prevents gravel/sand/turf from migrating laterally.[citation needed] It is also known as Grass pavers / Turf Pavers in India [11]

Porous asphalt is produced and placed using the same methods as conventional asphalt concrete; it differs in that fine (small) aggregates are omitted from the asphalt mixture. The remaining large, single-sized aggregate particles leave open voids that give the material its porosity and permeability. To ensure pavement strength, fiber may be added to the mix or a polymer-modified asphalt binder may be used.[12] Generally, porous asphalt pavements are designed with a subsurface reservoir that holds water that passes through the pavement, allowing it to evaporate and/or percolate slowly into the surround soils.[13][14]

Open-graded friction courses (OGFC) are a porous asphalt surface course used on highways to improve driving safety by removing water from the surface. Unlike a full-depth porous asphalt pavement, OGFCs do not drain water to the base of a pavement. Instead, they allow water to infiltrate the top 3/4 to 1.5 inch of the pavement and then drain out to the side of the roadway. This can improve the friction characteristics of the road and reducing road spray.[15]

Single-sized aggregate without any binder, e.g. loose gravel, stone-chippings, is another alternative. Although it can only be safely used in very low-speed, low-traffic settings, e.g. car-parks and drives, its potential cumulative area is great.[citation needed]

Grass pavement

Porous turf, if properly constructed, can be used for occasional parking like that at churches and stadia. Plastic turf reinforcing grids can be used to support the increased load.[16]:2 [17] Living turf transpires water, actively counteracting the "heat island" with what appears to be a green open lawn.

Main article: interlocking concrete pavers

Permeable interlocking concrete pavements are concrete units with open, permeable spaces between the units.[16]:2 They give an architectural appearance, and can bear both light and heavy traffic, particularly interlocking concrete pavers, excepting high-volume or high-speed roads.[18] Some products are polymer-coated and have an entirely porous face.

Permeable clay brick pavements are fired clay brick units with open, permeable spaces between the units. Clay pavers provide a durable surface that allows stormwater runoff to permeate through the joints.

Main article: Resin bound paving

Resin bound paving is a mixture of resin binder and aggregate. Clear resin is used to fully coat each aggregate particle before laying. Enough resin is used to allow each aggregate particle to adhere to one another and to the base yet leave voids for water to permeate through. Resin bound paving provides a strong and durable surface that is suitable for pedestrian and vehicular traffic in applications such as pathways, driveways, car parks and access roads.

Elastomerically bound recycled glass porous pavement consisting of bonding processed post consumer glass with a mixture of resins, pigments, granite and binding agents. Approximately 75 percent of glass in the U.S. is disposed in landfills.[19][20]

Stormwater management practices related to roadways:


Paver Repair Quotes

https://www.helpwikileaks.co.za/southgate/

Help Wiki Leaks Have Asphalt Services List