Paving Contractors Woodmead

How Do You Select The Best Driveway or Paving Contractors?

Driveway to a farm Driveway apron and sloped curb to a public street, all under construction

A driveway (also called drive in UK English) Paving Contractors  in Bryanston is a type of private road for local access to one or a small group of structures, and is owned and maintained by an individual or group.

Residential Paving Cost Estimate

Driveways rarely have traffic lights, but some that bear heavy traffic, especially those leading to commercial businesses and parks, do.

Driveways may be decorative in ways that public roads cannot, because of their lighter traffic and the willingness of owners to invest in their construction. Driveways are not resurfaced, snow blown or otherwise maintained by governments. They are generally designed to conform to the architecture of connected houses or other buildings.

Asphalt Driveway Near Me

Some of the materials that can be used for driveways include concrete, decorative brick, cobblestone, block paving, asphalt, gravel, decomposed granite, and surrounded with grass or other ground-cover plants.

Bleeding (roads)

Asphalt Paving Cost Estimate

Driveways are commonly used as paths to private garages, carports, or houses. On large estates, a driveway may be the road that leads to the house from the public road, possibly with a gate in between. Some driveways divide to serve different homeowners. A driveway may also refer to a small apron of pavement in front of a garage with a curb cut in the sidewalk, sometimes too short to accommodate a car.

Asphalt Surfacing Contractors Price

Often, either by choice or to conform with local regulations, cars are parked in driveways in order to leave streets clear for traffic. Moreover, some jurisdictions prohibit parking or leaving standing any motor vehicle upon any residential lawn area (defined as the property from the front of a residential house, condominium, or cooperative to the street line other than a driveway, walkway, concrete or blacktopped surface parking space).[2] Other examples include the city of Berkeley, California that forbids “any person to park or leave standing, or cause to be parked or left standing any vehicle upon any public street in the City for seventy-two or more consecutive hours.”[3] Other areas may prohibit leaving vehicles on residential streets during certain times (for instance, to accommodate regular street cleaning), necessitating the use of driveways.


Asphalt Paving Companies Price

Residential driveways are also used for such things as garage sales, automobile washing and repair, and recreation, notably (in North America) for basketball practice.

Another form of driveway is a ‘Run-Up’, or short piece of land used usually at the front of the property to park a vehicle on.[citation needed]

Interesting Facts About Paving Contractors in Fourways:

About Paving Contractors in Fourways:

Tarmac Driveways Near Me A diagram illustrating traffic movements in the interchange Plan of rejected diverging diamond interchange in Findlay, Ohio

A diverging diamond interchange (DDI), also called a double crossover diamond interchange (DCD),[1] is a type of diamond interchange in which the two directions of traffic on the non-freeway road cross to the opposite side on both sides of the bridge at the freeway. It is unusual in that it requires traffic on the freeway overpass (or underpass) to briefly drive on the opposite side of the road from what is customary for the jurisdiction. The crossover "X" sections can either be traffic-light intersections or one-side overpasses to travel above the opposite lanes without stopping, to allow nonstop traffic flow when relatively sparse traffic.

Like the continuous flow intersection, the diverging diamond interchange allows for two-phase operation at all signalized intersections within the interchange. This is a significant improvement in safety, since no long turns (e.g. left turns where traffic drives on the right side of the road) must clear opposing traffic and all movements are discrete, with most controlled by traffic signals.[2] Its at-grade variant can be seen as a two-leg continuous flow intersection.[3]

Additionally, the design can improve the efficiency of an interchange, as the lost time for various phases in the cycle can be redistributed as green time—there are only two clearance intervals (the time for traffic signals to change from green to yellow to red) instead of the six or more found in other interchange designs.

A diverging diamond can be constructed for limited cost, at an existing straight-line bridge, by building crisscross intersections outside the bridge ramps to switch traffic lanes before entering the bridge. The switchover lanes, each with 2 side ramps, introduce a new risk of drivers turning onto an empty, wrong, do-not-enter, exit-lane and driving wrongway down a freeway exit ramp to confront high-speed, oncoming traffic. Studies have analyzed various roadsigns to reduce similar driver errors.

Diverging diamond roads have been used in France since the 1970s. However, the diverging diamond interchange was listed by Popular Science magazine as one of the best innovations in 2009 (engineering category) in "Best of What's New 2009".[4]

Pictures from the first diverging diamond interchange in the United States, in Springfield, Missouri
Top left: Traffic enters the interchange along Missouri Route 13
Top right: Traffic crosses over to the left side of the road
Bottom left: Traffic crosses over Interstate 44
Bottom right:Traffic crosses back over to the right side of the road. Southbound approach to the I-44/Route 13 interchange in Springfield

Prior to 2009 the only known diverging diamond interchanges were in France in the communities of Versailles, Le Perreux-sur-Marne (A4 at N486) and Seclin, all built in the 1970s.[5] (The ramps of the first two have been reconfigured to accommodate ramps of other interchanges, but they continue to function as diverging diamond interchanges.)

Despite the fact that such interchanges already existed, the idea for the DDI was "reinvented" around 2000, inspired by the former "synchronized split-phasing" type freeway-to-freeway interchange between Interstate 95 and I-695 north of Baltimore.[6]

In 2005, the Ohio Department of Transportation (ODOT) considered reconfiguring the existing interchange on Interstate 75 at U.S. Route 224 and State Route 15 west of Findlay as a diverging diamond interchange to improve traffic flow. Had it been constructed, it would have been the first DDI in the United States.[7] By 2006, ODOT had reconsidered, instead adding lanes to the existing overpass.[8][9]

The Missouri Department of Transportation was the first US agency to construct one, in Springfield at the junction between I-44 and Missouri Route 13 (at 37°15′01″N 93°18′39″W / 37.2503°N 93.3107°W / 37.2503; -93.3107 (Springfield, Missouri diverging diamond interchange)). Construction began the week of January 12, 2009, and the interchange opened on June 21, 2009.[10][11] This interchange was a conversion of an existing standard diamond interchange, and used the existing bridge.

The first interchange in Canada opened on August 13, 2017 at Macleod Trail and 162 Avenue South in Calgary, Alberta.[12]

The interchange in Seclin (at 50°32′41″N 3°3′21″E / 50.54472°N 3.05583°E / 50.54472; 3.05583) between the A1 and Route d'Avelin was somewhat more specialized than in the diagram at right: eastbound traffic on Route d'Avelin intending to enter the A1 northbound must keep left and cross the northernmost bridge before turning left to proceed north onto A1; eastbound traffic continuing east on Route d'Avelin must select a single center lane, merge with A1 traffic that is exiting to proceed east, and cross a center bridge. All westbound traffic that is continuing west or turning south onto A1 uses the southernmost bridge.

Additional research was conducted by a partnership of the Virginia Polytechnic Institute and State University and the Turner-Fairbank Highway Research Center and published by Ohio Section of the Institute of Transportation Engineers.[13] The Federal Highway Administration released a publication titled "Alternative Intersections/Interchanges: Informational Report (AIIR)" [14] with a chapter dedicated to this design.

As of January 19, 2018, 106 DDIs were operational across the world including:

3D computer generated DCMI DCMI traffic flow patterns

A free-flowing interchange variant, patented in 2015,[21] has received recent attention.[22][23][24] Called the double crossover merging interchange (DCMI), it includes elements from the diverging diamond interchange, the tight diamond interchange, and the stack interchange. It eliminates the disadvantages of weaving and of merging into the outside lane from which the standard DDI variation suffers. As of 2016, no such interchanges have been constructed.

Paving Contractors in Fourways

Asphalt Driveway Price Moderate to severe Fatigue cracking.

Crocodile cracking, also called alligator cracking and perhaps misleadingly fatigue cracking, is a common type of distress in asphalt pavement. The following is more closely related to fatigue cracking which is characterized by interconnecting or interlaced cracking in the asphalt layer resembling the hide of a crocodile.[1] Cell sizes can vary in size up to 11.80 inches (300 mm) across, but are typically less than 5.90 inches (150 mm) across. Fatigue cracking is generally a loading failure,[1] but numerous factors can contribute to it. It is often a sign of sub-base failure, poor drainage, or repeated over-loadings. It is important to prevent fatigue cracking, and repair as soon as possible, as advanced cases can be very costly to repair and can lead to formation of potholes or premature pavement failure.

It is usually studied under the transportation section of civil engineering.

Fatigue cracking is an asphalt pavement distress most often instigated by failure of the surface due to traffic loading. However, fatigue cracking can be greatly influenced by environmental and other effects while traffic loading remains the direct cause. Frequently, overloading happens because the base or subbase inadequately support the surface layer and subsequently cannot handle loads that it would normally endure.[2] There are many ways that the subbase or base can be weakened.

Poor drainage in the road bed is a frequent cause of this degradation of the base or subgrade.[1] A heavy spring thaw, similarly to poor drainage, can weaken the base course, leading to fatigue cracking.[1]

Stripping or raveling is another possible cause of fatigue cracking. Stripping occurs when poor adhesion between asphalt and aggregate allows the aggregate at the surface to dislodge. If left uncorrected, this reduces the thickness of the pavement, reducing the affected portion's ability to carry its designed loading.[1] This can cause fatigue cracking to develop rapidly, as overloading will happen with loads of less magnitude or frequency.

Edge cracking is the formation of crescent-shaped cracks near the edge of a road.[3] It is caused by lack of support of the road edge, sometimes due to poorly drained or weak shoulders. If left untreated, additional cracks will form until it resembles fatigue cracking.[3] Like wheel-path fatigue cracking, poor drainage is a main cause of edge cracking, as it weakens the base, which hastens the deterioration of the pavement.[4] Water ponding (a buildup of water which can also be called puddling) happens more frequently near the edge than in the center of the road path, as roads are usually sloped to prevent in-lane ponding. This leads to excess moisture in the shoulders and subbase at the road edge. Edge cracking differs from fatigue cracking in that the cracks form from the top down, where fatigue cracks usually start at the bottom and propagate to the surface.

Fatigue cracking manifests itself initially as longitudinal cracking (cracks along the direction of the flow of traffic) in the top layer of the asphalt.[5] These cracks are initially thin and sparsely distributed. If further deterioration is allowed, these longitudinal cracks are connected by transverse cracks to form sharp sided, prismatic pieces. This interlaced cracking pattern resembles the scales on the back of a crocodile or alligator, hence the nickname, crocodile cracking.

More severe cases involve pumping of fines, spalling, and loose pieces of pavement. The most severe cases of fatigue cracking often occur with other pavement distresses, but are exemplified by: potholes,[1] large cracks(3/8" or larger), and severely spalled edges.[4]

There are many different ways to measure fatigue cracking, but in general a pavement distress manual or index will be used. For example, the Pavement Condition Index is widely used to quantify the overall level of distress and condition of a section of road. Measurement of fatigue cracking specifically (and pavement distress in general) is necessary to determine the overall condition of a road, and for determination of a time-line for rehabilitation and/or repair. There are many other rating systems, and many rating systems currently in use are based on the AASHO Road Test.

There are two important criteria to take into account when measuring fatigue cracking. The first is the extent of the cracking. This is the amount of road surface area which is affected by this pavement distress. The second criterion is the severity of the cracking.[6] Severity, which has been discussed above, refers to how far the cracking has progressed, and is often directly a function of crack width.[6] Severity may be rated numerically, or given a rating from "low" to "severe". The rating may be entered into a pavement management system, which will suggest a priority and method for the repair.

Systems have been developed that detect fatigue cracking and other types of pavement distress automatically.[7] They measure the severity and frequency of alligator cracking on the road-path. One such machine is the road surface profilometer, which is mounted on a vehicle and measures the profile of the road surface while it is moving down the roadway.

Preventing fatigue cracking can be as simple as preventing the common causes. For example, reducing overloading on an asphalt pavement or improving drainage[2] can prevent fatigue cracking in many cases. Prevention primarily depends on designing and constructing the pavement and subbase to support the expected traffic loads, and providing good drainage to keep water out of the subbase.

A good strategy to prevent overloading, which is a main cause of fatigue cracking, is to increase the depth of the asphalt layer. According to certain researchers, pavements that exceed a certain minimum strength or thickness can hypothetically handle infinitely many loads without showing structural defects, including fatigue cracking.[1] These pavements are called perpetual pavements or long-term performance pavements (LTPP).

When repairing pavement affected by fatigue cracking, the main cause of the distress should be determined. However, often the specific cause is fairly difficult to determine, and prevention is therefore correspondingly difficult. Any investigation should involve digging a pit or coring the pavement and subbase to determine the pavement's structural makeup as well as determining whether or not subsurface moisture is a contributing factor.[1] The repair needed also differs based on the severity and extent of the cracking.

In the early stages, sealing cracks with crack sealant limits further deterioration of the subgrade due to moisture penetration. Small areas may be repaired by removal of the affected area, and replacement with new base and asphalt surface.[2] Once the damage has progressed or the affected area is large and extensive, a structural asphalt overlay or complete reconstruction is necessary to ensure structural integrity. Proper repair may include first sealing cracks with crack sealant, installing paving fabric over a tack coat, or milling the damaged asphalt. An overlay of hot mix asphalt is then placed over the completed repair. [2]


Asphalt Repair Price Sealcoating a road on the University of California, Davis campus in 2013.

Sealcoating, or pavement sealing, is the process of applying a protective coating to asphalt-based pavements to provide a layer of protection from the elements: water, oils, and U.V. damage.

Sealcoat or pavement sealer is a coating for asphalt-based pavements. Sealcoating is marketed as a protective coating that extends the life of asphalt pavements. There is not any independent research that proves these claims.

Sealcoating may also reduce the friction or anti-skid properties associated with the exposed aggregates in asphalt.

Not all pavement sealcoat are created equal. For example, refined tar-based sealer offers the best protecting against water penetration and chemical resistance. Asphalt-based sealer typically offers poor protection against environmental chemical and harsher climates (salt water). Petroleum-based sealer offer protection against water and chemicals somewhere between the other two sealers. Another difference between coatings is in terms of wear. Again, refined tar-based sealer offers the best wear characteristics (typically 3–5 years) while asphalt-based sealer may last 1–3 years. Petroleum-based sealer falls between refined tar and asphalt.

There are concerns about pavement sealer polluting the environment after it is abraded from the surface of the pavement. Some states in North America have banned the use of coal tar–based sealants primarily based on United States Geological Survey studies.[1] The industry group that represents sealcoat manufacturers has performed numerous research and reviews of the USGS and have found it to be erroneous, biased (citation and white hat, to name a few) and too generalized in order to draw the conclusions that the United States Geological Survey claims.

There are primarily three types of pavement sealers. They are commonly known as refined tar-based (coal tar based), asphalt-based, and petroleum-based. All three have their advantages but are typically chosen by the contractors’ preference unless otherwise specified.

Prior to application the surface must be completely clean and dry using sweeping methods and/or blowers. If the surface is not clean and dry, then poor adhesion will result. Pavement sealers are applied with either pressurized spray equipment, or self-propelled squeegee machines or by hand with a squeegee. Equipment must have continuous agitation to maintain consistency of the sealcoat mix. The process is typically a two-coat application which requires 24 to 48 hours of curing before vehicles can be allowed back on the surface. Once the surface is properly prepared, then properly mixed sealer will be applied at about 60 square feet per gallon per coat.

The Sealcoating Process

Some studies that suggest that refined tar sealants are a significant contributor to polycyclic aromatic hydrocarbon levels in streams and creek beds and that the continual application of sealcoats may be a significant factor. As a result, a few municipalities in the United States have banned this material.[2] The same studies also suggest that it can be harmful if ingested before curing and ingesting soil or dust contaminated by eroded coal tar sealant.[3] It is also known to have effects on fish and other animals that live in water.

Paver Repair Cost Estimate